

Sportanlage Dornbusch

In Zusammenarbeit mit dem Landessportbund Hessen e.V. Geschäftsbereich: Sportinfrastruktur

Sportanlage Dornbusch

INHAI	<mark>LTSVERZEICHNIS</mark>	
1.	ZUSAMMENFASSUNG DER ENERGIEEINSPARUNGEN	2
2.	ANLAGENDATEN DES ÖKO-CHECKS	3
	ANLAGE UND ANSPRECHPARTNER	3
	GEBÄUDEDATEN DER SPORTANLAGE	4
2.2	VERBRAUCHSDATEN DER SPORTANLAGE	5
	HEIZENERGIEVERBRAUCH DER SPORTANLAGE	5
	WASSERVERBRAUCH DER SPORTANLAGE	8
	STROMVERBRAUCH DER SPORTANLAGE	9
3.	BESTANDSAUFNAHME UND AUSWERTUNG	11
3.1	NUTZUNG DER SPORTANLAGE	11
3.2	HEIZUNGSANLAGE	12
	HEIZUNGSANLAGEN SYSTEMVERGLEICH	12
	HEIZUNGSANLAGE IN DER SPORTANLAGE	14
	HEIZKREISLÄUFE	14 17
	FRENWÄRMESTEUERUNG EINSATZMÖGLICHKEITEN EINES BLOCKHEIZKRAFTWERKS	17
J. Z .J	BHKW'S (KRAFT-WÄRME-KOPPLUNG)	18
3.3	WARMWASSER	18
3.3.1	ZENTRALE WARMWASSERBEREITUNG	18
3.3.2	EINSATZMÖGLICHKEITEN EINER THERMISCHEN	
	SOLARANLAGE	20
	WÄRMESCHUTZ	20
	WÄRMEDÄMMUNG	20
3.5	SANITÄRE ANLAGEN	23
	DUSCHANLAGEN	23
	DUSCHRAUMZUSTAND DUSCHRAUMBELÜFTUNG	26 26
	WASCHTISCHE	27
	TOILETTENSPÜLUNG	29
	WC AUSSTATTUNG	30
3.5.7	SCHUHWASCHPLÄTZE	30
	Abwasser	31
	SONSTIGE ELEKTRISCHE VERBRAUCHER	31
3.5.10	BELEUCHTUNG	31

1. Zusammenfassung der Energieeinsparungen

In der nachfolgenden Zusammenstellung sind die wichtigsten Energieeinsparungen, mit hoher Priorität, einzeln nach Themengebiet aufgelistet.

Zusätzliche Energieeinsparungen werden in den einzelnen Themengebieten und in der Gesamtzusammenstellung des Berichtes benannt.

Einstufung als Priorität			Zusammenfassung der Energieeinsparungen	Energieeinsparung	
Kurz fristig	fristig fristig fristig		Bereiche	Einsparpotenziale / Sanierungskosten	
			Gebäude allgemein	Angaben in kWh / € / ca. Sanierungskosten	
	B bis C		Bedingt durch das Alter und die Bauweise des Gebäudes sollte ein Neubau geplant werden. Sämtliche Energieeinsparungsvorschläge führen nur zur kurzfristigen Verbesserungen.	Entfällt.	
			Einsatz von LED Flutlichtstrahlern (24 und 16 KW (Zwei Anlagen)	Angaben in kWh / € / ca. Sanierungskosten	
	B bis C		Einsatz von LED-Strahlern.	2.300 / 650,00 / ca. 20.000,00 Tennenplatz 1 (16 KW) ca. 30.000, Tennenplatz 2 (24 KW)	

2. Anlagendaten des Öko-Checks

2.1.1 Anlage und Ansprechpartner

Anlage	Sportanlage Dornbusch
	Sportplätze, Stadien
Anschrift	Marcus Benthien
Aliscillit	Hanauer Landstraße 54
	60314 Frankfurt am Main
Ansprechpartner	Marcus Benthien
Telefonnummer 069 – 212 - 31623	
Stadt	Frankfurt am Main
Öko-Check durchgeführt vom	Landessportbund Hessen e.V.
am	15.10.2015
Bericht Nr. 1617 E_Sportanlage Dornbusch	
Druckdatum	23.11.2015

Angaben zur Sportanlage

Außenansicht des Umkleidegebäudes

2.1.2 Gebäudedaten der Sportanlage

Die Sportanlage verfügt über folgende Gebäudekonfiguration:

Gebäudekonfiguration und Außenanlagen der Sportanlage	Gebäudetyp	Daten
Hauptgebäude	Umkleidegebäude	Kapitel 1 bis 3

Gebäudekonfiguration und Außenanlagen der Sportanlage

In der nachfolgenden Tabelle sind die baulichen Gegebenheiten der Sportanlage aufgelistet.

Diese Daten geben einen Überblick über die vorhandene Bausubstanz des Hauptgebäudes und weiterer Nebengebäude.

Haupt- und Nebengebäude	Stockwerk	Länge [m]	Breite [m]	Fläche [m²]	Höhe [m]	Volumen [m³]
Umkleidegebäude	Erdgeschoss	21,30	12,00	255,60	i.M. 2,60 /	
Bruttog	255,60	,	1			
Nettog	232,60	,	1			

Daten Gebäude

Außenansicht des Umkleidegebäudes

2.2 Verbrauchsdaten der Sportanlage

Die Ergebnisse aus der Befragung und Begehung sowie die in Form von Belegen und Protokollen bereitgestellten Verbrauchsdaten und Unterlagen werden in diesem Kapitel entsprechend der Methodik des Öko-Checks ausgewertet. Behandelt werden die Schwerpunkte Wasser, elektrische Energie und fossile Brennstoffe. Diesen Bereichen kommt erfahrungsgemäß sowohl aus ökologischer als auch aus ökonomischer Sicht die größte Bedeutung zu.

2.2.1 Heizenergieverbrauch der Sportanlage

Die Tabelle gibt an, welche Energiebetriebsmittel in der Sportanlage eingesetzt werden.

Heizenergiebetriebsmittel	Fossile Brennstoffe			Andere
	/ Erdgas		/	Strom
	X Flüssiggas, bis 2013		/	Solar
	/ Heizöl		X	Fernwärme, ab 2014
	/	Holz	/	Erdwärme

Daten zu Heizenergiebetriebsmitteln

Die anschließende Tabelle liefert einen Überblick über die Brennstoffverbrauchsdaten und Brennstoffkosten für die Jahre **2012, 2013 und 2014** in der Sportanlage.

Verbrauchsdaten	Einheit	2012	2013	2014
Verbrauch:	[kWh]	111.425	102.918	34.764
Verbrauch:	[Liter]	16.386	15.135	/
Gesamtkosten	[€]	12.814,47	10.165,27	4.433,61
Realer Preis / kWh	[€/kWh]	0,11500	0,09877	0,12753

Daten für Brennstoffverbrauch und Brennstoffkosten

Im Mittel von drei Jahren werden ca. 83.036 kWh an Heizenergie, für die Wärmeversorgung und Warmwasserbereitung, benötigt.

Realer Preis im Mittel aus drei Jahren: 0,11377 €/kWh

Berechnung des Heizenergieverbrauchskennwertes für Nichtwohngebäude laut Bekanntmachung des Bundesministeriums für Verkehr, Bau und Stadtentwicklung vom 30.07.2009.

Angaben der Bezugsflächen für die Berechnung des Energiekennwertes	Länge/m	Breite/m	Fläche/m²
Umkleidegebäude	21,30	12,00	255,60
Gesamt Bruttoges	255,60		
Gesamt Nettoges	232,60		

Auswertung der Bezugsflächen

Angaben für die Berechnung des Heizenergieverbrauchswertes	Berechnungseinheit:	Zahlenwert
Gesamtwasserverbrauch in der Sportanlage	m³ (im Mittel aus drei Jahren)	Geschätzt 400,00
Warmwasserverbrauch = 40 % Warmwasseranteil im Jahr	m³	160,00
Energiebedarf für die Warmwassererzeugung = 57 kWh für 1m³ Warmwasser	57 kWh	57
Gesamtenergie für die Warmwassererzeugung	kWh	9.120,00
Berechnung o	des Heizenergieverbrauchswertes (kWh/m²/a)	
Gesamtenergieverbrauch der Sportanlage	kWh (im Mittel von drei Jahren)	83.036,00
Gesamtenergieverbrauches der Warmwasserzeugung	kWh	- 9.120,00
Bereinigter Energieverbrauch	kWh	= 73.916,00
Klimafaktor nach PLZ (60431) (EnEV 2014)	(im Mittel aus 2012, 2013, 2014)	1,18
witterungsbereinigter Gesamtenergieverbrauch	kWh	= 87.220,88
Gesamtenergieverbrauches der Warmwasserzeugung	kWh	+ 9.120,00
Gesamtenergieverbrauch	kWh	= 96.340,88
Bruttogeschossfläche (BGF 100%)	m²	255,60
Nettogeschossfläche (NGF 91%)	m²	232,60
Heizenergieverbrauchskennwert	kWh/(m² NGF)/a	414

Auswertung des Heizenergieverbrauchskennwertes für Nichtwohngebäude

Der Heizenergieverbrauchskennwert Ihrer kompletten Sportanlage liegt bei 414 kWh/m²/a.

Der Heizenergieverbrauch ihrer kompletten Sportanlage liegt weit über dem Bereich der Vergleichswerte der Bekanntmachung des Bundesministeriums.

Sportanlage Dornbusch

In der Tabelle "Vergleichswerte Heizung und Warmwasser (Mittelwert) für verschiedene Sportanlagen" finden Sie eine Übersicht über die Einstufung der verschiedenen Gebäudetypen.

Bezeichnung der Sportanlage	Vergleichswerte Heizung und Warmwasser nach EnEV 2014 (kWh/m²/a)
Sportheim (Vereinsheim)	80
Geb. f. Sportplätze Stadt FFM (Bereich C)	168
Bauhöfe Stadt FFM (Bereich C)	114

Daten der Vergleichswerte Heizung und Warmwasser für die verschiedenen Sportanlagen (nicht nach dem Bauwerkzuordnungskatalog katalogisiert).

Empfehlung Heizenergie:

Kurzfristig:

• Regelmäßige Aufzeichnung der Verbräuche (z.B. halbjährlich).

2.2.2 Wasserverbrauch der Sportanlage

In der Tabelle sind der Frischwasserverbrauch und die Wasserkosten der Jahre **2012**, **2013 und 2014** dargestellt. Die Angaben beziehen sich auf die gesamte Sportanlage.

Im Mittel aus drei Abrechnungsjahren werden pro Jahr ca. 1.743 m³ an Trinkwasser verbraucht.

Abrechnungszeitraum	Einheit	2012	2013	2014
Frischwasser	[m³]	1.381	1.531	2.317
Gesamtkosten	[€]	1339,82	1.876,52	33770,14

Daten zum Wasserverbrauch nach Abrechnungszeiträumen

Generell teilt sich der Wasserverbrauch in Sportanlagen in die beiden Bereiche Sanitärwasser und Platzbewässerung auf.

In der Sportanlage **sind keine** Wassernebenzähler der Stadt installiert.

Dem Wasserverbrauch im Sanitärbereich kommt von der Kostenseite besondere Bedeutung zu, da es sich hier auch um Kosten für Frisch-, Ab- und Warmwasser handelt.

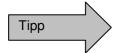
Die Kenntnis des Wasserverbrauchs für die Platzbewässerung ist die Grundlage für die Befreiung von den Abwassergebühren für die Beregnungswassermenge.

Empfehlung Wasserverbrauchserfassung:

Kurzfristig:

♦ Regelmäßige Aufzeichnung der Verbräuche (z.B. halbjährlich).

2.2.3 Stromverbrauch der Sportanlage


Die nachfolgende Tabelle zeigt die Stromverbrauchsdaten in der Sportanlage mit den Gesamtkosten der Jahre **2012**, **2013 und 2014**.

Verbrauchsdaten nach Jahren	Einheit	2012	2013	2014
Verbrauch	[kWh]	15.919	12.450	17.193
Gesamtkosten	[€]	3.944,52	3.543,88	4.183,53
Realer Preis / kWh	[Cent/kWh]	24,78	28,46	24,33

Daten für Stromtarif und Stromverbrauch

Im Mittel aus drei Abrechnungsjahren werden pro Jahr ca. 15.187 kWh an Strom verbraucht.

Realer Preis im Mittel aus drei Jahren: 0,2586 €/kWh

In Sportstätten macht es Sinn, insbesondere in verbrauchsintensiven Bereichen wie Flutlicht, etc. Strom-Nebenzähler installiert zu haben und über die einzelnen Zählerstände regelmäßig Buch zu führen.

In der Sportanlage **sind keine** Stromnebenzähler der Stadt installiert.

Verbrauchsdaten nach Nebenzähler	Einheit	2012	2013	2014
Zähler Nummer 202919 Umkleidegebäude	[kWh]	15.919	12.450	17.193
Zähler Nummer 57468, Flutlicht	[kWh]	4.298	3.274	3.818

Daten für die Nebenzähler

Berechnung des Stromverbrauchskennwertes für Nichtwohngebäude laut Bekanntmachung des Bundesministeriums für Verkehr, Bau und Stadtentwicklung vom 30.07.2009.

Angaben für die Berechnung des Stromverbrauchswertes	Berechnungseinheit:	Zahlenwert
Gesamtstromverbrauch in der Sportanlage	kWh (im Mittel aus drei Jahren)	15.817
Bruttogeschossfläche (BGF 100%)	m²	255,60
Nettogeschossfläche (NGF 91%)	m²	232,60
Stromverbrauchskennwert	kWh/(m² NGF)/a	65

Tabelle und Auswertung des Stromverbrauchskennwertes für Sportanlagen

Der Stromverbrauchskennwert Ihrer kompletten Sportanlage liegt bei 65 kWh/m²/a.

Der Stromverbrauch ihrer kompletten Sportanlage liegt über dem Bereich der Vergleichswerte der Bekanntmachung des Bundesministeriums.

Bezeichnung der Sportanlage	Vergleichswerte (Strom) nach EnEV 2014 (kWh/m²/a)
Sportheim (Vereinsheim)	20
Geb. f. Sportplätze Stadt FFM (Bereich C)	21,9
Bauhöfe Stadt FFM (Bereich C)	9,5

Daten der Vergleichswerte Strom für die verschiedenen Sportanlagen (nicht nach dem Bauwerkzuordnungskatalog katalogisiert).

Empfehlung Stromtarife:

Kurzfristig:

- Der reale Preis pro Kilowattstunde von 25,86 Cent/kWh ist als durchschnittlich einzustufen.
- Der Bedarf an elektrischer Energie ist als hoch einzustufen.
- ♦ Regelmäßige Aufzeichnung der Verbräuche (z.B. halbjährlich).

3. Bestandsaufnahme und Auswertung

3.1 Nutzung der Sportanlage

Die Daten und Ergebnisse aus dem Öko-Check werden entsprechend der Methodik des Öko-Checks dargestellt, d.h. sie werden in Themenbereiche gegliedert und in den Unterkapiteln einzeln betrachtet.

Der Wasserverbrauch teilt sich in Sportanlagen in zwei Bereiche auf:

Sanitäre Bereiche:

Die spezifischen Verbrauchszahlen sind abhängig von der Vereinsgröße und liegen bei einigen hundert Kubikmeter Trinkwasser pro Jahr.

Sportplatzbewässerung:

Die spezifischen Verbrauchszahlen liegen bei 100 bis 3500 m³ pro Jahr und Freianlage.

Nutzung der Sportanlage

In Ihrer Sportanlage finden pro Woche an **7 Tagen** Trainingseinheiten oder Punktspiele statt.

Ihre Sportanlage wird pro Woche an **7 Tagen** zwischen **4 und 8 Stunden** pro Tag genutzt.

Ihre Sportanlage wird ganzjährig genutzt.

3.2 Heizungsanlage

3.2.1 Heizungsanlagen Systemvergleich

In der folgenden Tabelle werden Vor- und Nachteile der verschiedenen Heizungssysteme qualitativ dargestellt.

Bei der Bewertung handelt es sich um allgemeine Erfahrungswerte, die eine erste Orientierung geben können, doch stark von den örtlichen Gegebenheiten abhängen können.

Jedes Grad Celsius Raumtemperatur weniger spart bis zu 6% Heizkosten.

■Variante	Energieträger	Wirtschaftlichkeit	Ökologie	Komfort	Platzbedarf (mit Tank)
Nachtspeicherheizung	Strom			-	0
Tieftemperaturheizung	Heizöl	++	0	+	-
Niedertemperaturheizung	Heizöl	+	0	+	-
Brennwertheizung	Heizöl	++	+	+	-
Niedertemperaturheizung	Flüssiggas	+	0	++	-
Brennwertheizung	Flüssiggas	++	+	++	-
Niedertemperaturheizung	Erdgas	+	0	++	+
Brennwertheizung	Erdgas	++	+	++	+
Elektrische Wärmepumpe	Strom-Umgebungswärme	0	0	++	0
Holzpelletsheizung	Holzpellets (Presslinge)	+	++	++	-
Holzvergaserkessel	Holzscheite	0	++	+	
Fernwärmeanschluss	Fernwärme	+	+	++	++
Blockheizkraftwerk (BHKW)	Heizöl	+	++	+	-
Blockheizkraftwerk (BHKW)	Flüssiggas	+	++	+	-
Blockheizkraftwerk (BHKW)	Erdgas	+	++	+	+
Solarunterstützung	Sonnenenergie		++	-	-

Bewertung: ++ sehr gut, + gut, o neutral, - ungünstig, -- sehr ungünstig

Übersicht zu den Vor- und Nachteilen verschiedener Heizungssystemen

Sportanlage Dornbusch

Qualitative Unterschiede verschiedener Heizungssysteme.

Die nachfolgende Tabelle zeigt die qualitativen Unterschiede zwischen Erdgas-, Heizöl- und Holz befeuerten Anlagen.

	Stückholzfeuerung	Pellet Feuerung	Hackschnitzelfeuerung	Erdgasheizung	Ölheizung
Anlagenkosten	mittel	hoch	sehr hoch	niedrig	mittel
Brennstoffkosten	gering	mittel	gering	hoch	hoch
Brennstoffraumbedarf	mittel	mittel bis hoch	hoch bis sehr hoch	entfällt	mittel bis hoch
Bedienungsaufwand	hoch	gering	gering	sehr gering	gering
Automatisierungsgrad	Lagerhaltung 1-3 mal täglich nachlegen Betrieb von Hand	Lagerhaltung Befüllung 1-2 mal jährlich Betrieb automatisch	Lagerhaltung Befüllung 2-10 mal jährlich Betrieb automatisch	voll auto- matisch	Befüllung 1-2 mal jährlich Betrieb automatisch
Entaschung	manuell (täglich)	Vollautomatisch (auf Wunsch) Halbautomatisch (1-2 mal die Woche)	Vollautomatisch (auf Wunsch) Halbautomatisch (1-2 mal die Woche)	entfällt	entfällt
Wartung / Reinigung / Instandhaltung	gering	gering	gering	sehr gering	gering

Qualitative Unterschiede zwischen Holzheizungen und konventionellen Heizsystemen

Ein zentraler Punkt hinsichtlich des Klimaschutzes ist die Gebäudeerwärmung. Ihre Sportanlage verfügt über das in der Tabelle aufgeführten Heizungssystemen (Spalte 1), welches mit den in Spalte 2 gekennzeichneten Brennstoff(en) betrieben wird.

Heizungsbetrieb	He	izungssysteme	Brennstoffe		
	/	Zentral	/	Erdgas	
	/	Dezentral	/	Flüssiggas	
	X	Fernwärme	/	Heizöl	
	/	Erdwärme	/	Kohle	
Systeme und Brennstoffe	/		/	Strom	
			/	Holzpellets	
			/	Scheit-Stückholz	
			/	Hackschnitzel	
			/	keine	

Daten zu den Heizungssystemen und Brennstoffen

3.2.2 Heizungsanlage in der Sportanlage

Die komplette Heizungsanlage wird über eine Fernwärmestation betrieben.

Empfehlung Zentralheizung:

Kurzfristig:

- ♦ Der "Heizungsverantwortliche" muss technisch eingewiesen und geschult sein, um die Anlage fachgerecht bedienen können. Dieser Zugriff sollte, nur dafür ausgewählten Personen und ihren Vertretern möglich sein.
- Ein Wartungsvertrag ersetzt keinen Heizungsverantwortlichen, da nur dieser die Heizungssteuerung dem Bedarf optimal anpassen kann.

Fernwärmestation der Sportanlage

3.2.3 Heizkreisläufe

Die Heizkreispumpen sind nicht mit Stufenschaltern ausgestattet oder elektronisch regelbar. Eine Faustregel besagt, dass die Pumpenleistung 0,2% der Kesselleistung laut Typenschild betragen sollte.

Beispiel: 20 kW*0,002=0,04 kW bzw. 40 W.

Probieren sie aus, ob auch bei niedriger Pumpenleistung die Heizkörper ausreichend warm werden. Die Energieeinsparverordnung (EnEV) (aktuelle Fassung) fordert geregelte Heizungspumpen (§ 12 Abs.3.).

Wer Umwälzpumpen in Heizkreisen von Zentralheizungen mit mehr als 25 Kilowatt Nennwärmeleistung erstmalig einbaut oder einbauen lässt oder vorhandene ersetzt oder ersetzen lässt, hat Sorge zu tragen, dass diese so ausgestattet oder beschaffen sind, dass die elektrische Leistungsaufnahme dem betriebsbedingten Förderbedarf selbständig in mindestens drei Stufen angepasst wird, soweit sicherheitstechnische Belange des Heizkessels dem nicht entgegenstehen.

Sportanlage Dornbusch

Parallel zur Energieeinsparverordnung (EnEV) (aktuelle Fassung) ist für die Angabe bzw. Ermittlung der anlagentechnischen Kennwerte die DIN-V 4701 – Teil 10 in Kraft getreten. (Die DIN-V 4701 – Teil 10 wird benötigt, wenn man ermitteln möchte, ob ein Gebäude inklusive der installierten Anlagentechnik den in der Energieeinsparverordnung (EnEV) (aktuelle Fassung) vorgegebenen Primärenergie-Grenzwert einhält).

Die darin aufgeführte Hilfsenergiebewertung basiert auf Daten leistungsgeregelter Pumpen bzw. es kann bei der individuellen Ermittlung mit einem Vorteil bis zu 30 % gegenüber ungeregelten Pumpen gerechnet werden. (Quelle: Merkblatt Energieeinsparverordnung (EnEV)(aktuelle Fassung)

Empfehlung Heizkreispumpen:

Kurzfristig:

 Bei der Mess- und Regeltechnik für Heizungs- und Pumpensteuerung sind Modernisierungen möglich und Einspareffekte durch bedarfsgerechte bzw. nutzungsspezifische Anlagensteuerungen zu erzielen.
 (Bitte beachten Sie die Energieeinsparverordnung (EnEV)(aktuelle Fassung).

> Der Wasserdruck im Heizkreissystem wurde bei der Bestandsaufnahme erfasst (Spalte 1). Spalte 2 und 3 enthalten Angaben über Isolation und Isolationsstärke der Heizkreisleitungen.

Heizkreisleitungen	Wasserdruck im Heizkreis		Isolierung der Heizleitungen		Isolationsstärke [mm]	
Magazide lagliarung und	/	Zu niedrig	Х	Ja	/	< 10
Wasserdruck, Isolierung und Isolierstärke	Х	Normal	/	Nein	Х	10 – 30
isolierstarke	/	Zu hoch	/	Teilweise	/	> 30

Wasserdruck und Isolation der Heizkreisleitungen

Die Energieeinsparverordnung (EnEV) (aktuelle Fassung) fordert die Begrenzung der Wärmeabgabe der Wärmeverteilungs- und Warmwasserleitungen.

Die Energieeinsparverordnung ersetzt die bisherige Heizungsanlagen-Verordnung (HeizAnLV) und die Wärmeschutzverordnung (WSchVO).

Beim Neubau und bei der Modernisierung- oder Sanierung von Wärmeleitverteilungs- und Warmwasserleitungen sowie deren Armaturen in Gebäuden sind die Dämmvorschriften nach der Energieeinsparverordnung (EnEV) (aktuelle Fassung) zu beachten. (Quelle: UNIPIPE Systeminformationen)

Sportanlage Dornbusch

Mindest- Dämmanforderung	Zeile	Art der Leitungen/Armaturen	Mindestdicke der Dämmschicht, bezogen auf eine Wärmeleitfähigkeit von Lambda =0,035 W/(m · K)
100 %	1	Innendurchmesser bis 22 mm	20 mm
100 %	2	Innendurchmesser über 22 mm bis 35 mm	30 mm
100 %	3	Innendurchmesser über 30 mm bis 100 mm	gleich Innendurchmesser
100 %	4	Innendurchmesser über 100 mm	100 mm
50 %	5	Leitungen und Armaturen nach den Zeilen 1 bis 4 in Wand- und Deckendurchbrüchen, im Kreuzungsbereich von Leitungen, an Leitungsverbindungsstellen, bei zentralen Netzverteilern	die Hälfte der Anforderungen der Zeilen 1 bis 4
50 %	6	Leitungen von Zentralheizungen nach den Zeilen 1 bis 4, die nach Inkrafttreten dieser Verordnung in Bauteilen zwischen beheizten Räumen verschiedener Nutzer verlegt werden	die Hälfte der Anforderungen der Zeilen 1 bis 4
6 mm	7	Leitungen nach Zeile 6 im Fußbodenaufbau	6 mm

Wärmedämmung von Wärmeverteilungs- und Warmwasserleitungen sowie Armaturen

Empfehlung Wasserdruck und Isolation:

Kurzfristig:

 Kontrollieren Sie ihren Leitungsdruck mindestens zweimal j\u00e4hrlich und f\u00fcllen Sie gegebenenfalls Wasser nach.

> Der Wärmetauscher sollte der Nutzungsbedingung angepasst sein. Bei Neuanlagen sollte hier unbedingt der Fachmann zu Rate gezogen werden.

Auch bei der Bedienung von Thermostatventilen wird viel falsch gemacht. Um das Aufheizen von Räumen zu beschleunigen, werden Ventile fälschlich oft höher "aufgerissen". Dies ist aber faktisch kaum der Fall, stattdessen stellen sich nach einiger Zeit (bei Abwesenheit) überhöhte Raumtemperaturen ein, da die Rückstellung der Ventile üblicherweise vergessen wird.

Um ein überhöhtes Aufdrehen zu verhindern, lassen sich die Ventile in der Regel nach oben hin feststellen. Als günstig erweisen sich hier Ausführungen, bei denen die Arretierung nicht per Hand, sondern mittels Werkzeug vorgenommen werden kann.

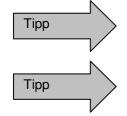
Fest arretierte Geräte, so genannte "Behördenmodelle", die insb. in öffentlichen Einrichtungen, in denen mit viel Missbrauch zu rechnen ist, eingesetzt werden, sind nur mittels Werkzeug verstellbar.

Ein Nachteil ist, dass die Ventile ohne Werkzeug nicht heruntergedreht werden können, wenn es Gästen zu warm ist bzw. beim Lüften oder bei Nichtbelegung der Räume. Ventile, die ganzjährig in einer Stellung bleiben, drohen mitunter festzusetzen, bewegen Sie die Ventilköpfe bei Gelegenheit kurz, um dies zu verhindern.

Sportanlage Dornbusch

Beispielthermostat mit Nullstelle							
Ziffer	0	*	1	2	3	4	5
Raumlufttemperatur (°C)	1	6	12	16	20	24	28

Einstellbereiche von Thermostatventilen


Heizkörper		Art der Wärmetauscher		Thermostate
	/	Radiatoren	X	Ja, Behördenmodelle installiert
Art und Steuerung	X	Heizkörper	/	Nein
	/	Luftheizgeräte	/	Teilweise
	/	Fußbodenheizung	/	Raumfühler
	/	Deckenstrahlungsheizung	/	/

Daten für Wärmetauscher und Thermostate

3.2.4 Frenwärmesteuerung

Die nachfolgende Auswertungsauflistung gibt Ihnen Auskunft über die Steuerung Ihrer Heizungsanlage und der Schaltzeiten. (Die Schaltzeiten sind dem Bedarf anzupassen)

- Die Fernwärmeverteilung ist automatisch gesteuert.
- Die Steuerung **ist dem** Wochenbelegungsplan der Sportanlage angepasst.

Eine optimale Heizungsnutzung kann durch eine genaue Abstimmung zwischen den Sporttreibenden und dem Heizungsverantwortlichen erzielt werden.

Eine manuelle Steuerung ist bei variierendem Belegungsplan sinnvoll, vorausgesetzt sie wird vom Heizungsverantwortlichen sorgfältig betrieben.

Empfehlung Heizungssteuerung: Kurzfristig:

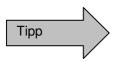
• Eine Fernwärmeverteilung sollte gemäß dem Wochenbelegungsplan programmgesteuert sein.

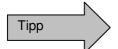
3.2.5 Einsatzmöglichkeiten eines Blockheizkraftwerks BHKW's (Kraft-Wärme-Kopplung)

In Ihrer Sportanlage ist kein BHKW im Einsatz.

Der Einsatz eines BHKW's wird für diese Anlage **nicht empfohlen**, da die Rahmenbedingungen für den Einsatz eines BHKW als **ungünstig** bewertet werden. Ein BHKW erzeugt gleichzeitig Strom und Warmwasser. Dies wird als Kraft-Wärme-Kopplung bezeichnet. Die eingesetzte Primärenergie wird so optimal ausgenutzt.

1. Fernwärme als Energieträger in der Sportanlage.

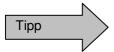

3.3 Warmwasser


3.3.1 Zentrale Warmwasserbereitung

In Verbindung mit der zentralen Fernwärme wird das Warmwasser zentral bereitgestellt.

Warmwasserspeicher	Warmwasserspeicher 1	Warmwasserspeicher 2
Hersteller	Keine Angaben	Keine Angaben
Тур	RET 500 1HL	RET 500 1HL
Baujahr	2014	2014
Volumen [Liter]	500	500
Temperatur [°C]	60	60
Nennwärmeleistung [kW]	Keine Angaben	Keine Angaben

Daten für Warmwasserspeicher



Warmwasserspeicher, die ein Alter von 15 oder mehr Jahren aufweisen, entsprechen nicht mehr dem heutigen Standard. In der Regel sind sie überdimensioniert und schlecht isoliert.

Bei einer Speichererneuerung sollte das Speichervolumen neu berechnet werden. Hierzu ist es wichtig, dass Sie den tatsächlichen Warmwasserbedarf möglichst genau kennen. Diesen Wert sollten Sie durch den Einsatz eines konventionellen Wasserzählers im Kaltwasserzulauf des Warmwasserspeichers ermitteln.

> Die folgenden Auswertungsauflistung gibt Ihnen Auskunft über die Steuerung ihrer Warmwasserbereitung und ob die Schaltzeiten dem Bedarf entsprechend richtig angepasst sind.

- Die Warmwasserbereitstellung ist automatischmit der Fernwärmeverteilung gesteuert.
- Die Warmwasserbereitung ist zeitgesteuert.
- Die Warmwasserbereitstellung wird durch eine Zirkulationspumpe unterstützt.
- Die Zirkulation **ist** über eine Wochenzeitschaltuhr gesteuert.
- Die Steuerung der Warmwasserbereitstellung ist dem Wochenbelegungsplan der Sportanlage angepasst.

Wenn die Zirkulationspumpe mit einem Stufenschalter ausgestattet ist, reicht es meist aus diesen auf niedrigster Stufe zu betreiben.

Warmwasserleitungen	Isolierung der Warmwasserleitungen			Isolationsstärke [mm]		
		Ja	/	< 10		
Isolierung und Isolierstärke	/	Nein	X	10 – 30		
	/	Nicht alle	/	>30		

Tabelle: Daten Warmwasserleitungen

Systemdarstellung eines Pufferschichtspeichers mit einer Frischwasserstation.

Empfehlung zentraler Warmwasserbereitung:

Mittel,- bis Langfristig:

 Einbau eines Pufferschichtspeichers (max. 1.000 Liter) mit einer Frischwasserstation für die Warmwasserbereitstellung der Dusch- und Sanitärräume.

Kurzfristig:

- ♦ Bis zur Durchgangsarmatur sollte eine Zirkulationsleitung mit permanent durchlaufender Zirkulationspumpe installiert sein (DVGW Arbeitsblätter (aktuellste Fassungen)).
- Bitte beachten Sie in Ihrer Sportanlage die Trinkwasserverordnung (aktuelle Fassung).

Warmwasserspeicher der Sportanlage

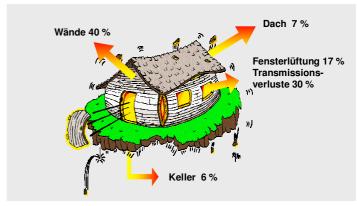
3.3.2 Einsatzmöglichkeiten einer thermischen Solaranlage

In Ihrer Sportanlage ist keine Solaranlage im Einsatz.

Aus ökologischen Gründen ist eine solare Energiegewinnung zu befürworten. Aus ökonomischen Gründen ist eine genaue Betrachtung erforderlich.

Die Prüfung des Einsatzes einer thermischen Solaranlage wird für diese Anlage **nicht empfohlen**, da die Rahmenbedingungen für den Einsatz einer thermischen Solaranlage als **ungünstig** gewertet werden.

Fernwärme als Energieträger in der Sportanlage.


3.4 Wärmeschutz

Ein weiteres voluminöses Potenzial liegt in der Verbesserung des Wärmeschutzes gedeckter Sportanlagen. Die Einsparung von Energie durch Wärmeschutz oder Wärmedämmung ist allerdings mit hohen Investitionen verbunden.

3.4.1 Wärmedämmung

Um den Zielwert so einfach wie möglich zu gestalten, werden kleine und große Gebäude gleichbehandelt, obwohl es mit zunehmender Gebäudegröße, wegen des günstigeren Verhältnisses von Gebäudefläche zum Gebäudevolumen, zu einer Minderung des Energieverbrauches kommt.

Heizwärmebedarf

Unabhängig davon, ob ohnehin Sanierungen geplant sind, führt die EnEV (aktuelle Fassung) in zwei Punkten eine Verpflichtung für Hauseigentümer ein, Nachbesserungen vorzunehmen.

Dies sind im Einzelnen:

Heizungs- und Wasserohre nach EnEV 2014

In nicht beheizten Räumen, die zugänglich sind aber bisher nicht gedämmt waren, müssen bis 31.12.2006 nach den Bestimmungen der EnEV (aktuelle Fassung) gedämmt werden.

Dämmung von Decken nach EnEV 2014

Am **16.10.2013** hat die Bundesregierung die EnEV 2014 mit allen vom Bundesrat geforderten Auflagen beschlossen. Sie wird am **01.05.2014** in Kraft treten.

Hierbei ergibt sich folgende Änderung im Bereich der obersten Geschossdecke: Für Bestandsgebäude besteht nach EnEV eine nachträgliche Dämmpflicht oberster Geschoßdecken, nach der ein U-Wert von mind. 0,24 W/m²K erreicht werden muss.

Für die Dämmung der Kellerdecken hingegen sieht die EnEV keine Dämmpflicht mehr vor.

In der Tabelle "Entwicklungsdaten beim nachträglichen Wärmeschutz" finden sie eine Übersicht über die Entwicklung des nachträglichen Wärmeschutzes und daraus resultierend verschiedene Dämmstärken.

	EnEV	2002	EnEV 2014		
	U-Wert	Dämmung	U-Wert	Dämmung	
Dachschräge	0,30	12 - 14 cm	0,24	16 - 18 cm	
Dachboden	0,30	10 - 12 cm	mind. 0,24	16 - 18 cm	
Flachdach	0,25	14 - 16 cm	0,20	18 - 20 cm	
Außendecke nach unten	0,35	08 - 10 cm	0,24	14 - 16 cm	
Wand (Fassadendämmung)	0,35	08 - 10 cm	0,24	14 - 16 cm	
Wand (Innendämmung)	0,45	05 - 06 cm	0,35	08 - 10 cm	
Decken allgemein (Außer Kellerdecken)	0,40	06 - 08 cm	mind. 0,24	16 - 18 cm	
Dämmung Bodenoberseite	0,50	04 - 05 cm	0,50	04 - 05 cm	
Fenster allgemein	= 1,70	/	= 1,30	/	
Dachflächenfenster	= 1,70	/	= 1,40	/	

Entwicklungsdaten beim nachträglichen Wärmeschutz

In der Tabelle "Daten für Fensterarten" sind die im Gebäude vorhandenen Fensterarten aufgelistet (Spalte 1) und prozentual in Bezug auf die Gesamtfensterfläche in Spalte 2 eingetragen. Hinsichtlich der Einbruchssicherheit werden Glasbausteine und Sicherheitsverglasung mit "sehr gut" bewertet. Beim Isolationsvermögen schneiden diese Fenstervarianten eher schlecht ab. Für gute Wärmedämmung von Fensterfronten bedarf es einer mehrfachen Isolier- oder Wärmeschutzverglasung. Aus Wärmeschutzgründen heraus gilt die Faustregel "Je häufiger die Anlage genutzt wird, umso

besser sollte der Wärmeschutz sein."

Sportanlage Dornbusch

Fensterarten	Vorhanden	Anteil in % an der gesamten Fensterfläche	Isolations- vermögen	Einbruchs- sicherheit
Einfachverglasung	X	50		
Glasbausteine	/	/		•••
Sicherheitsverglasung	/	/	•	•••
2-Scheiben-Isolierverglasung	X	50	•	•
3-Scheiben-Isolierverglasung	/	/	••	••
2-Scheiben-Wärmeschutzverglasung	/	/	••	•
3-Scheiben-Wärmeschutzverglasung	/	/	•••	••
●●● = sehr gut	●● = gut	= weniger gu	ıt ■= n	icht geeignet

Daten für Fensterarten

Vergleichen Sie bei der Wärmedämmung von Decken und Wänden Ihre vorhandene Isolierstärken mit den in Spalte 2 angegebenen Richtwerten für die Isolationsstärke, um Ihren Handlungsbedarf zu erkennen. Bedenken Sie, dass Wärmeschutzmaßnahmen mit nicht unerheblichen Kosten verbunden sind.

Wärmedämmung	lsolierstärke [cm]	Richtwerte Isolation [cm] EnEV 2014	Mauerwerk [cm]
Dach	0	20	0
Außenwände	0	16	24
Oberste Decke	10	16 - 18	0
Boden	4	6	0

Daten für Wärmedämmung

	/	Ziegel	/	Metall
Die Dächer des Gebäudes sind	X	Asbestfaserzementplatten	/	Bitumen
gedeckt mit:	/	Schiefer	/	Zementwellplatten
	/	Folie	/	Gründachabdichtung

Dachabdichtung

Betrachtung der Wirtschaftlichkeit verschiedener Maßnahmenpakete.

Wirtschaftlich ist eine Energiesparmaßnahme nur, wenn die Einsparung über die Lebensdauer der Anlage größer ist, als die Aufwendungen.

Es müssen sämtliche Kosten berücksichtigt werden.

Verbrauchsgebundene Kosten (Brennstoffe, Energien)

 Patrick and the state of the state

Betriebsgebundene Kosten (Bedienung, Wartung,

Personal)

Kapitalgebundene Kosten (Zinsen, Abschreibung, Instandsetzung)

sonstige Kosten (Versicherung, Steuern)
Teilt man die Investitionskosten durch die jährliche Einsparung,

erhält man die Rücklaufzeit des eingesetzten Kapitals.

Ist diese geringer als die zu erwartende Nutzungsdauer, ist eine Wirtschaftlichkeit gegeben.

Sportanlage Dornbusch

	Heizeinsparung	Amortisationszeit	Investitions- kosten
Dämmung der Außenwände	15 - 30 %	25 - 50 Jahre	75 - 100 € /m²
Fenster mit Wärmeschutzverglasungen	25 - 30 %	30 - 40 Jahre	225 - 375 € /m²
Dämmung der obersten Geschossdecke	5 - 25 %	8 - 10 Jahre	12 - 30 € /m²
Dämmung der Kellerdecke	5 - 10 %	10 - 15 Jahre	15 - 25 € /m²
Konventionelle Heizkesselerneuerung	10 - 20 %	5 - 10 Jahre	35 - 75 € /m²
Brennwerttechnik (gegenüber Heizkessel)	20 - 30 %	5 - 10 Jahre	75 - 250 € /m²
Einsatz einer modernen Regelung	5 - 15 %	3 - 5 Jahre	500 - 750 € /m²
Einsatz von Thermostatventilen	bis 5 %	1 - 3 Jahre	25 - 35 € /m²

Einsparpotenziale und Wirtschaftlichkeit verschiedener Einsparmaßnahmen

Empfehlung Wärmedämmung:

Mittel,- bis Langfristig:

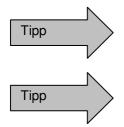
- Austausch von vorhandenen Einfachverglasten Fensteranlagen. Einbau von Wärmeschutzverglasten Fensteranlagen.
- Dämmung der Decken über dem Erdgeschoss oder Erneuerung der Dachabdichtung mit Einbau eines Wärmgedämmten Dachabdichtungssystems.

3.5 Sanitäre Anlagen

3.5.1 Duschanlagen

Die größten Einsparpotenziale im Sanitärbereich liegen erfahrungsgemäß bei den Duschanlagen.

Nachfolgend wird Ihnen eine zahlenmäßige Erfassung der Duschen für die verschiedenen möglichen Armaturen gegeben. Die minimal bzw. maximal gemessenen Durchflüsse Ihrer Anlage sind in den Spalten 2 und drei eingetragen. Die qualitative Bewertung (Spalten 4-6) favorisiert die durch Näherungselektronik oder Selbstschlussventile erzielbare Wassereinsparung. Aus hygienischen Gründen wird eine Armatur mit Näherungselektronik mit "sehr gut" eingestuft. Eine solche Technik ist jedoch aufgrund der hohen Investitionskosten nur für Anlagen mit einer sehr hohen Frequentierung (z.B. in Schwimmbädern) zu empfehlen.


		Durchfluss	Durchfluss	Wasserein-		Vandalen-
Wandduschen / Armaturen	Anzahl	min.	max.	sparung	Hygiene	sicherheit
		[Liter/Min.]	[Liter/Min.]	durch Armatur		Sichemen
Kaltwasseranschluss	/	/	/		•	•
2-Griff-Armaturen	/	/	/		•	•
Einhand-Mischarmatur	/	/	/	•	•	•
1-Griff-Armaturen / vorgemischt	/	/	/		•	•
Selbstschlussarmaturen	10	10,00	10,00	••	••	••
Näherungselektronik	/	/	/	•••	•••	••
●●● = sehr gut	● = gut		■ = weniger	gut ■	■ = nicht ge	eeignet

Daten für Wandduschen

Sportanlage Dornbusch

Aus Wasserersparnisgründen sind Armaturen mit Selbstschlussventilen zu bevorzugen. Eine Wassereinsparung von bis zu 30% ist durch den Einsatz von Selbstschlussarmaturen möglich.

Dem gegenüber können hohe Wartungs- und Instandhaltungskosten stehen.

Vor dem Einsatz von Selbstschlussarmaturen sollte der Leitungsdruck und die Leitungsqualität bei älteren Anlagen geprüft werden, da ansonsten eine einwandfreie Funktion beeinträchtigt werden kann.

In Duschräumen mit wenigen Duschplätzen (3 Duschen) und einer hohen Frequentierung der Duschen innerhalb kurzer Zeit, reduziert sich das Einsparpotenzial bei Selbstschlussarmaturen, da die Duschen meistens im Rotationsprinzip genutzt werden.

Je höher die Frequentierung der Duschanlage ist, desto mehr lohnt sich der Einsatz moderner, wassersparender Armaturen.

Die vor Ort gemessenen Schließzeiten der Armaturen sind in der folgenden Tabelle dargestellt. Der Richtwert bei Selbstschlussarmaturen liegt bei 30 - 45 Sekunden. Wird dieser Richtwert überschritten, sollte die Armatur durch einen Installateur neu eingestellt werden.

Armatur	Schließzeit (gemessen) Minimalwert [sek.]	Schließzeit (gemessen) Maximalwert [sek.]	Richtwert [sek.]
Selbstschlussarmaturen:	35	45	30 – 45

Daten für Schließzeiten

In Ihrer Anlage ist **kein** zentrales Mischwasserthermostat installiert.

Bis zur Durchgangsarmatur sollte eine Zirkulationsleitung mit permanent durchlaufender Zirkulationspumpe installiert sein (DVGW Arbeitsblätter (aktuellste Fassungen)).

Zirkulationspumpen der Warmwasserbereitstellung

Sportanlage Dornbusch

In den nachstehenden Tabellen sind die vor Ort gemessenen mittleren Durchflüsse in Litern pro Minute für die entsprechende vorhandene Armatur eingetragen. Der empfohlene Richtwert beträgt 10 Liter pro Minute. Dieser Richtwert wird bei Einsatz so genannter Duschköpfe mit Durchfluss-Konstanthaltern erzielt. Die größten Einsparpotentiale sind entsprechend mit den Duschköpfen zu erzielen. Die Armatur regelt anschließend nur noch die Duschzeit.

Die tabellarische Auswertung der Duschen ergibt die in Spalte 3 errechnete Wasserersparnis bei Einsatz von Duschköpfen mit Durchfluss-Konstanthaltern und der Zugrundelegung des Richtwertes. Setzt man eine Duschzeit von 5 Minuten an, so errechnet sich daraus eine Wasserersparnis in Litern pro Duschgang (letzte Spalte).

Wandduschen	Messwert Durchfluss (Durchschnitt)	Richtwerte	Wasserersparnis durch Einsatz von Duschköpfen mit Durchfluss- Konstanthaltern		
Einheit	[Liter/Min.]	[Liter/Min.]	[Liter/Min.]	Liter pro Duschgang (5 Minuten)	
Selbstschlussarmaturen	10	10	0,00	0,00	

Auswertung für Wandduschen

Duschköpfe mit druckunabhängigen Durchfluss-Konstanthaltern reduzieren den Wasserdurchfluss auf maximal 10 Liter pro Minute.

Hohe Wassereinsparung versus Trinkwasserhygiene

Bei einer deutlichen Reduzierung des Wasserbedarfs durch den Einsatz wassersparender Duschköpfe oder der Stilllegung von Warmwasserleitungen an den Waschtischen, kann es im installierten Wassernetz zu ungewollten Nebenwirkungen bei der Trinkwasserhygiene kommen.

Aus diesem Grund ist bei der Planung von wassersparenden Sanitäranlagen immer ein Fachbetrieb einzuschalten und das vorhandene Leitungsnetz zu überprüfen.

Empfehlung Duschen:

Mittel,- bis Langfristig:

- Grundsanierung der Duschbereiche.
- Die Zirkulationspumpe soll nach den Arbeitsblättern der DVGW (aktuellste Fassungen)permanent durchlaufen.
- Bitte beachten Sie in Ihrer Sportanlage die Trinkwasserverordnung (aktuelle Fassung).

Duschen der Sportanlage

3.5.2 Duschraumzustand

Auskunft über den Zustand der Duschanlagen in Bezug auf Schimmelstellen gibt Ihnen die Tabelle "Daten für den Duschraum". Eine hohe Anzahl von Schimmelstellen weist auf einen zu hohen Feuchtigkeitsgehalt im Duschraum hin. Aus hygienischen Gründen und zum Erhalt der Bausubstanz ergibt sich in diesem Fall einen hohen Handlungsbedarf. Eine Maßnahme ist der Einsatz von Duschköpfen mit Tropfenbildung, eine weitere sollte eine gut funktionierende Be- und Entlüftung der Duschräume sein (siehe nachfolgenden Abschnitt).

Duschraum	Zustand (Schimmelstellen)		Deckenbeschaffenheit	
Zustand und Deckenbeschaffenheit	/	keine	/	Beton
	Х	wenige	/	Holz
	/	viele	/	Metall
	/	sehr viele	X	Gipskarton
	/	/	/	Akustik

Daten für Duschraum

3.5.3 Duschraumbelüftung

Wichtig in Duschräumen ist die Verwendung von Duschköpfen mit Tropfenbildung.

In Duschräumen mit hoher Frequentierung ist eine gut funktionierende Be- und Entlüftung weiterhin von großer Bedeutung.

Diese sollte über eine feuchtigkeitsgesteuerte Regelung (Hygrostat) erfolgen, um ein vollständiges Abtrocknen des Duschraumes zu gewährleisten.

Um Wärmeverlusten vorzubeugen, sind kontrollierte Schaltzeiten vorzusehen. Während der Wintermonate kann auf eine Fensterlüftung, die zu hohen Energieverlusten führt, verzichtet werden.

Sportanlage Dornbusch

Die Dimensionierung des Abluftventilators ist abhängig von der Raumgröße. Mindestens das **10 fache** des Raumvolumens sollte in einer Stunde nach außen befördern werden können.

Duschraum	Ma	Manuelle Lüftung		matische Lüftung	Nutzen
	/	Glasbausteine	/	handgesteuert	••
	/	Fensteranlagen	/	sensorgesteuert	•••
Lüftung und Steuerung	/	Lüftungsschlitze in der Tür	/	lichtgekoppelt	•••
	/	Oberlichter in der Decke	Х	feuchtigkeits- gesteuert	••••
	/	keine	/	keine	•
●●● = sehr gut	●●● = gut	● ● = W6	eniger gut	•= nic	cht gut

Daten für Duschraumbelüftung

3.5.4 Waschtische

Der Bestand an verschiedenen Armaturen wird nachfolgend tabellarisch aufgelistet.

Armatur	Anzahl	Wasserein- sparung durch Armatur	Hygiene	Vandalen- sicherheit
Kaltwasseranschluss	/			•
2-Griff-Armaturen	/			•
Einhand-Mischarmatur	/	•	•	••
1-Griff-Armaturen/vorgemischt	/			•
Selbstschlussarmaturen	6	••	••	•••
Näherungselektronik	/	•••	•••	••
Reihenwaschtisch (1-Griff)	/			•
Reihenwaschtisch (2-Griff)	/			•
Reihenwaschtisch (Selbstschluss)	/	••	••	•••
●●● = sehr gut	= gut	■ = weniger gı	ut ■=r	nicht geeignet

Daten Waschtische

Die Daten geben Auskunft über für die verschiedenen Armaturen hinsichtlich ihrer Möglichkeiten zur Wassereinsparung, der Eignung aus hygienischer Sicht sowie ihrer Sicherheit gegenüber mutwilliger Zerstörung (Vandalen Sicherheit). Die Beurteilung reicht von "sehr gut" bis "nicht geeignet".

Nachfolgend werden die Wasserverbräuche der unterschiedlichen Armaturen quantitativ mit Messwerten angegeben. Spalte 1 und 2 zeigt die gemessenen minimalen bzw. maximal vorgefundenen Einzelwerte. Der Wasserverbrauch an Waschtischen ist vergleichsweise gering. Dennoch bestehen auch hier Einsparpotenziale.

Sportanlage Dornbusch

	Messw			Wasserersparnis bei
Armatur	Durchfluss min. [Liter/Min.]	Durchfluss max. [Liter/Min.]	Richtwerte [Liter/Min.]	Einsatz von Durchfluss- Konstanthaltern [Liter/Min.]
Selbstschlussarmaturen	6,00	6,00	6	0,00

Auswertung Waschtische

Bei Wasserspararmaturen mit druckunabhängigen Durchfluss-Konstanthaltern liegt der Wasserdurchfluss bei maximal 6 Liter pro Minute. Dieser Wert ist als Richtwert in Spalte 4 neben den tatsächlich gemessenen gestellt. Spalte 5 gibt Auskunft über die tatsächlich zu erreichende Wasserersparnis bei Umstellung auf Durchfluss-Konstanthalter, bzw. beim Einsatz von Wasserspareinsätzen bei Reihenwaschtischen.

Empfehlung Waschtischarmaturen:

Mittel,- bis Langfristig:

• Grundsanierung der Toilettenbereiche

Waschtisch der Sportanlage

3.5.5 Toilettenspülung

Während Druckspüler und konventionelle Spüler wegen ihres hohen Wasserverbrauchs von >9 Litern pro Spülgang "weniger gut" geeignet sind, erweisen sich Spül-Stopp-Kästen und 2-Mengen-Spülkästen als deutlich sparsamer im Wasserverbrauch.

Spülarmaturen	Anzahl	Durchfluss [Liter / Spülgang]	Wasserein- sparung durch Armatur	Hygiene	Vandalen- sicherheit	
Druckspüler	/	>9	•	•	••	
Konventionelle Toilettenspülkästen	/	>9	•	••	•	
Spül-Stopp-Toilettenspülkästen	2	3-9	••	•	••	
2-Mengen-Toilettenspülkästen	/	2/6 oder 4,5/9	•••	••	••	
●●● = sehr gut	● = gut	• :	= weniger gut	■ = nic	■ = nicht geeignet	

Daten zur Toilettenspülung

In Sportanlagen werden Spül-Stopp-Toilettenspülungen meist nicht sachgemäß betätigt. Lösungsmöglichkeiten bieten mit Hinweisschildern versehene Zweimengenspülkästen mit fest eingestellten Spülvolumen.

Im Bereich der Toiletten ist eine Trinkwassersubstitution durch Brauchwasser oder durch Regenwasser gut möglich, jedoch müssen dafür meist aufwändige Arbeiten, wie z.B. die Installation neuer Wasserleitungen durchgeführt wird. Aus diesem Grunde ist eine Umrüstung nur dann zu empfehlen, wenn zeitgleich umfangreiche Substanzerhaltungs- oder Sanierungsarbeiten anstehen.

Empfehlung Toilettenspülung: Mittel,- bis Langfristig:

• Grundsanierung der Toilettenbereiche

Toilette der Sportanlage

3.5.6 WC Ausstattung

Ausstattung			Ökologisch wertvoll	Hygiene	Vandalensicherheit
Stoffbandrollen		/	•••	••	••
Stoffhandtuch		/	•••	•	•
Papierhandtücher Recyclin	ng	/	••	•••	
Papierhandtücher Normal		/	•	•••	
Elektrischer Händetrockner		/			•••
●●● = sehr gut	•	= gut	● = wen	iger gut	■ = nicht geeignet

Daten Ausstattung im WC

Stoffbandrollen werden als ökologisch wertvoller eingestuft als Papierhandtücher.

Aus hygienischen Gründen wird allerdings Papierhandtüchern ein Vorteil eingeräumt.

Empfehlung WC-Ausstattung:

Mittel,- bis Langfristig:

• Grundsanierung der Toilettenbereiche

3.5.7 Schuhwaschplätze

An Schuhwaschplätzen (oftmals Waschtischarmaturen) gehen zum Teil große Wassermengen verloren, da entweder vorhandene Durchflussbegrenzer entwendet werden oder das Wasser nach Benutzung nicht abgestellt wird. In beiden Fällen ist der Trinkwasserverbrauch sehr hoch. Für Schuhwaschplätze kann erwogen werden, anstelle der Waschtische Waschschüsseln aufzustellen. Sofern eine Regenwassersammelanlage installiert ist, sind Schuhwaschanlagen damit zu versorgen.

Bei geeigneter Wahl von Armaturen mit Durchflussbegrenzung ist auch hier der Wasserverbrauch zu beschränken.

Waschplätze	Anzahl	Durchfluss [Liter/Min]	Trinkwasser	Brunnen / Regenwasser
Schuhwaschplätze	4	10,00	X	

Daten für Waschplätze

Empfehlung Waschplätze:

Kurzfristig:

 An Schuhwaschplätzen sollten druck unabhängige Durchfluss-Konstanthalter mit Diebstahlschutz installiert werden.

3.5.8 Abwasser

In Sportanlagen werden erfahrungsgemäß Reinigungs- oder Desinfektionsmittel verwendet, die das Abwasser stark belasten. In den meisten Fällen sind diese jedoch nicht notwendig bzw. durch weniger aggressive Reinigungsmittel ersetzbar. Aus diesem Grund sollten sie beim Kauf handelsüblicher Präparate darauf achten, dass die Reinigungsmittel kein Formaldehyd, Chlor oder Phosphat beinhalten. Nutzen Sie lieber Schmierseife oder leicht abbaubare Tenside, Essigreiniger oder Zitronensäurereiniger.

Empfehlung Abwasser:

Kurzfristig:

Einsatz umweltfreundlicher Reinigungsmittel und biologischer Entkalker.

3.5.9 Sonstige elektrische Verbraucher

Eine Vielzahl von elektrischen und elektronischen Geräten besitzt keinen Netzschalter. Auch im scheinbar ausgeschalteten Zustand befinden sich diese Geräte tatsächlich in einem "Standby Betrieb" und verbrauchen weiterhin Strom. In vielen Fällen schafft hier eine schaltbare Steckdosenleiste in der Netzzuleitung Abhilfe, deren Schalter die Geräte komplett vom Netz trennt.

Empfehlung elektrische Verbraucher:

Kurzfristig:

 Fernseher, Receiver und Bürogeräte verbrauchen im "Standby Betrieb" unnötig Energie. Installieren Sie einen Hauptschalter (z.B. Steckerleiste mit Schalter) um die Geräte ganz vom Netz zu trennen.

3.5.10 Beleuchtung

Grundsätzlich sollten in allen Räumen Energiesparlampen installiert sein. Dies gilt auch für Lampen mit kurzer Brenndauer (ab 15 Min täglich). Die Leistung der Energiesparlampen sollte bei gleicher Lichtausbeute etwa 1/5 derjenigen von Glühlampen betragen. Die Energiesparlampen mit elektronischen Vorschaltgeräten arbeiten flimmerfrei ohne Einschaltverzögerung und sind äußerst schaltfest. Die Lebensdauer der Energiesparlampen ist darüber hinaus ca. sechs- bis achtmal höher als bei vergleichbaren Glühlampen. Niedervolt-Halogenlampen sind keine Energiesparlampen.

Verwendung elektronischer Vorschaltgeräte

Leuchtstofflampen benötigen zum Betrieb ein Vorschaltgerät, das sich in der Regel in der Leuchte befindet, und bei Energiesparlampen in der Lampe integriert ist. Dabei unterscheidet man zwischen konventionellen (KVG), verlustarmen (VVG) und elektronischen (EVG) Vorschaltgeräten.

Sportanlage Dornbusch

Diese Vorschaltgeräte haben auch einen erheblichen Einfluss auf den Stromverbrauch der Beleuchtung:

KVG	VVG	EVG
71 Watt	66 Watt	55 Watt
100 %	93 %	77 %

Anschlussleistungen einer 58 Watt Leuchtstofflampe an verschiedenen Vorschaltgeräten

Elektronische Vorschaltgeräte (EVG) haben geringere Verluste gegenüber den konventionellen Vorschaltgeräten (KVG) und ermöglichen durch Hochfrequenzbetrieb eine um 10-15 % höhere Lichtausbeute der Leuchtstofflampen (siehe Tabelle).

Die Umrüstung von bestehenden Anlagen auf elektronische Vorschaltgeräte ist aufwendig (wenn überhaupt möglich) und technisch nicht unproblematisch. Dazu kommt, dass alte Leuchten nicht mehr dem Stand der Technik entsprechen. In der Regel ist meist eine komplette Neuinstallation der Beleuchtung notwendig und zu bevorzugen.

Häufiges An- und Ausschalten verbraucht nicht mehr Strom, wie häufig gemutmaßt wird, kann aber die Lebensdauer von Lampen herabsetzen. Dies gilt vor allem für Leuchtstoffröhren mit konventionellem Vorschaltgerät. Glühlampen sowie Leuchtstoffröhren und Energiesparlampen, die mit einem elektronischen Vorschaltgerät ausgestattet sind, haben keine Probleme mit dem häufigen Schalten.

Vorteile von LED-Röhren

Wer die neuen energiesparenden LED-Röhren sicher eingebaut hat, genießt einige Vorteile:

- geringerer Stromverbrauch gegenüber herkömmlichen Leuchtstoffröhren
- lange Lebensdauer unabhängig von der Einschalthäufigkeit
- das Licht ist sofort mit maximaler Helligkeit direkt nach dem Einschalten ohne Flimmern verfügbar
- Röhren sind mit verschiedenen Farbtemperaturen (Farbeindruck der Lichtquelle) erhältlich

Mögliche Gefahren

Je nach Bauart Ihrer alten Leuchtstoffröhre müsste eventuell vor dem Einsetzen der neuen LED-Röhre der Lampenträger geöffnet und ein sogenanntes Vorschaltgerät entfernt oder überbrückt werden. Bei diesem Eingriff lauern Gefahren bis hin zum Stromschlag! Trotz verstärkter Kontrollen des Gewerbeaufsichtsamtes werden vereinzelt gefährliche LED-Röhren angeboten, an denen bei falschem, einseitigem Einsetzen der Röhre in den Lampenträger spannungsführende Teile berührbar werden.

Verliert die Leuchte bei der Umstellung die Zulassung? Solange kein Eingriff in die Leuchte gegeben ist, bleibt die

Zulassung der Leuchte bestehen, wie es beim Betrieb mit KVG oder VVG mit Ersatzstarter für LED Röhren der Fall ist. Findet ein Eingriff in die Leuchte statt, z.B. beim Entfernen oder überbrücken des Vorschaltgeräts oder einer Neuverdrahtung, dann erlöschen die Zulassung und Hersteller-Garantien. Wenn man das Vorschaltgerät eliminiert wird, fingiert die Armatur nur noch als 230 V Fassung (Stecker).

Sportanlage Dornbusch

Alle elektronischen Komponenten befinden sich in der LED-Röhre und sind mit dieser geprüft und zertifiziert. Da für die korrekte Stromzufuhr der LED-Röhre der Elektriker zuständig ist, besteht trotz Umrüstung eigentlich kein Risiko.

Folgende Tabelle zeigt die unterschiedlichen lichttechnischen Eigenschaften verschiedener Lampentypen

Lampentyp	Lichtausbeute (lm/W)	Lebensdauer (h)	Farbwieder- gabequalität	Startzeit
Glühlampe	6 - 16	1.000	Gut	Sofort
Halogenglühlampe	14 - 22	2.000	Sehr gut	Sofort
Kompakt-Leuchtstofflampe	40 - 76	8.000	Gut	Schnell
Leuchtstoff	43 - 104	10.000	Gut	Schnell
LED-Röhren	8 – 60	15.000	Gut	Sofort

Lichtausbeute verschiedener Leuchtmittel

Folgende Tabelle zeigt wie viel Lumen bei welcher Watt Zahl freigesetzt wird

Energieverbrauch	Lumen Glühbirne	Lumen Halogenlampe	Lumen Energiesparleuchte	Lumen LED
10 Watt	80 lm	/	/	/
15 Watt	120 lm	119 lm	125 lm	136 lm
40 Watt	415 lm	410 lm	423 lm	470 lm
60 Watt	710 ml	702 lm	741 lm	806 lm

Lichtausbeute verschiedener Leuchtmittel

Anhand der Tabelle können Sie erkennen, dass die LED-Leuchte die größte Lichtausbeute erbringt. Das heißt, bei gleichem Stromverbrauch bzw. Energiekosten sind die LED-Leuchten im Vergleich zu Energiesparlampen und Glühbirnen wesentlich effizienter. Das Austauschen von Glühbirnen und Energiesparlampen zugunsten der LED-Lampe wird sich also nicht nur in der Helligkeit wiederspiegeln, sondern auch im Stromverbrauch bemerkbar machen.

Einsatz energiesparender Regelungstechnik

Was bei einer Heizungsanlage zur Selbstverständlichkeit gehört, wird bei den Beleuchtungssystemen eher selten genutzt. Die Möglichkeit, mit der zu Hilfenahme von Regelungstechniken, Licht gezielt einzusetzen, dort wo es auch genutzt werden soll. Vor dem Einsatz zusätzlicher Technik sollte erwogen werden, ob eine motivationsfördernde Maßnahme auch eine Verbesserung des Nutzerverhaltens zum Ziel hat.

Folgende Regelungssysteme stehen zur Verfügung

- Nachlaufschaltungen in den Flurbereichen.
- Zeitschaltung der einzelnen Räume und Bereiche.
- Anwesenheitsabhängige Regelung.
- Tageslichtabhängige Regelung.

Sportanlage Dornbusch

Empfehlung Beleuchtung:

Kurzfristig Umkleide,- Flur- und Toilettenbereichen:

- ♦ Alle Nebenbereiche der Sportanlage sollten über separate Bewegungsmelder geschaltet werden.
- ♦ Konsequenter Einsatz von LED Beleuchtungs Systemen.