

Sportanlage Bonames

In Zusammenarbeit mit dem Landessportbund Hessen e.V. Geschäftsbereich: Sportinfrastruktur

Sportanlage Bonames

INHAI	TSVERZEICHNIS	
1.	ZUSAMMENFASSUNG DER ENERGIEEINSPARUNGEN	2
2.	ANLAGENDATEN DES ÖKO-CHECKS	3
	ANLAGE UND ANSPRECHPARTNER	3
	GEBÄUDEDATEN DER SPORTANLAGE	4
2.2	VERBRAUCHSDATEN DER SPORTANLAGE	5
	HEIZENERGIEVERBRAUCH DER SPORTANLAGE	5
	WASSERVERBRAUCH DER SPORTANLAGE	8
	STROMVERBRAUCH DER SPORTANLAGE	11
3.	BESTANDSAUFNAHME UND AUSWERTUNG	13
3.1	NUTZUNG DER SPORTANLAGE	13
3.2	HEIZUNGSANLAGE	14
	HEIZUNGSANLAGEN SYSTEMVERGLEICH	14
	HEIZUNGSANLAGE IN DER SPORTANLAGE	16
	HEIZKREISLÄUFE	17
	HEIZUNGSSTEUERUNG EINSATZMÖGLICHKEITEN EINES BLOCKHEIZKRAFTWERKS	21
5.2.5	BHKW'S (KRAFT-WÄRME-KOPPLUNG)	21
3.3		23
	ZENTRALE WARMWASSERBEREITUNG	23
3.3.2	EINSATZMÖGLICHKEITEN EINER THERMISCHEN	
	SOLARANLAGE	25
3.4	WÄRMESCHUTZ	28
	WÄRMEDÄMMUNG	28
	SANITÄRE ANLAGEN	31
	DUSCHANLAGEN	31
	Duschraumzustand	34
	DUSCHRAUMBELÜFTUNG	34
	WASCHTISCHE TOILETTENSPÜLUNG	35 37
	URINALE	38
	WC AUSSTATTUNG	39
	ABWASSER	39
	SONSTIGE ELEKTRISCHE VERBRAUCHER	39
3.5.10	BELEUCHTUNG	40

1. Zusammenfassung der Energieeinsparungen

In der nachfolgenden Zusammenstellung sind die wichtigsten Energieeinsparungen, mit hoher Priorität, einzeln nach Themengebiet aufgelistet.

Zusätzliche Energieeinsparungen werden in den einzelnen Themengebieten und in der Gesamtzusammenstellung des Berichtes benannt.

Einstufung als Priorität			Zusammenfassung der Energieeinsparungen	Energieeinsparung	
Kurz fristig	Mittel fristig	Lang fristig	Bereiche	Einsparpotenziale / Sanierungskosten	
			Heizungsanlage	Angaben in kWh / € / ca. Sanierungskosten	
A			Erneuerung der Heizungsanlage mit Heizkreisverteiler und Warmwasserspeicher.	35.000 / 3.600 / 45.000,00	
			Thermostatventile der Heizkörperanlagen	Angaben in kWh / € / ca. Sanierungskosten	
A			Rüsten Sie allen Heizkörperanlagen in Dusch-, Umkleide-, Toilette- oder Flurbereiche mit festeingestellten Heizkörperventilen aus.	6.000 / 620,00 / 2.000,00	
			Einsatzmöglichkeiten einer thermischen Solaranlage	Angaben in kWh / € / ca. Sanierungskosten	
Α			Siehe Auswertung.	11.400 / 1.154,82 / 12.000,00	
			Duschanlagen	Angaben in kWh / € / ca. Sanierungskosten	
A	Neue Duscharmaturen und Duschköpfe im Zuge der Heizungserneuerung Achtung. Mischwasserthermostat.		im Zuge der Heizungserneuerung Achtung. Mischwasserthermostat.	Keine Einsparung / ca. 20.000,00 €	
			Beleuchtung Dusch-, Umkleide-, und Toilettenbereiche	Angaben in kWh / € / ca. Sanierungskosten	
A			Belassen der zentralen Schaltung der Raumbeleuchtung. Einsatz von Bewegungsmeldern. Einsatz von LED- Beleuchtungs-Systemen.	4.200,00 / 1.100,00 / 7.500,00	

2. Anlagendaten des Öko-Checks

2.1.1 Anlage und Ansprechpartner

Anlage	Sportanlage Bonames	
	Sportplätze, Stadien	
Anschrift	Marcus Benthien	
Aliscillit	Hanauer Landstraße 54	
	60314 Frankfurt am Main	
Ansprechpartner	Marcus Benthien	
Telefonnummer	069 – 212 - 31623	
Stadt	Frankfurt am Main	
Öko-Check durchgeführt vom	Landessportbund Hessen e.V.	
am	13.10.2015	
Bericht Nr. 1612	E_Sportanlage Bonames	
Druckdatum	19.10.2015	

Angaben zur Sportanlage

Außenansicht des Vereinsheimes

2.1.2 Gebäudedaten der Sportanlage

Die Sportanlage verfügt über folgende Gebäudekonfiguration:

Gebäudekonfiguration und Außenanlagen der Sportanlage	Gebäudetyp	Daten
Hauptgebäude	Vereinsheim	Kapitel 1 bis 3

Gebäudekonfiguration und Außenanlagen der Sportanlage

In der nachfolgenden Tabelle sind die baulichen Gegebenheiten der Sportanlage aufgelistet.

Diese Daten geben einen Überblick über die vorhandene Bausubstanz des Hauptgebäudes und weiterer Nebengebäude.

Haupt- und Nebengebäude	Stockwerk	Länge [m]	Breite [m]	Fläche [m²]	Höhe Volume [m] [m³]	
Vereinsheim, Anbau	Erdgeschoss	13,00	6,00	78,00	2,60	202,80
Vereinsheim	Erdgeschoss	17,00	7,94	134,98	2,60	350,95
Vereinsheim	Erdgeschoss	13,99	8,94	125,08	2,60	352,18
Vereinsheim	Obergeschoss	17,00	7,99	135,83	2,60	353,16
Vereinsheim	Obergeschoss	13,99	8,99	125,77	2,60 327,00	
Bruttogeschossflächen (BGF 100%)						/
Nettogeschossflächen (NGF 91 %)						/

Daten Gebäude

Vereinsheim der Sportanlage

2.2 Verbrauchsdaten der Sportanlage

Die Ergebnisse aus der Befragung und Begehung sowie die in Form von Belegen und Protokollen bereitgestellten Verbrauchsdaten und Unterlagen werden in diesem Kapitel entsprechend der Methodik des Öko-Checks ausgewertet. Behandelt werden die Schwerpunkte Wasser, elektrische Energie und fossile Brennstoffe. Diesen Bereichen kommt erfahrungsgemäß sowohl aus ökologischer als auch aus ökonomischer Sicht die größte Bedeutung zu.

2.2.1 Heizenergieverbrauch der Sportanlage

Die Tabelle gibt an, welche Energiebetriebsmittel in der Sportanlage eingesetzt werden.

Heizenergiebetriebsmittel	Fossile Brennstoffe			Andere
	/ Erdgas X Flüssiggas		/	Strom
			/	Solar
	/	Heizöl	/	Fernwärme
	/	Holz	/	Erdwärme

Daten zu Heizenergiebetriebsmitteln

Die anschließende Tabelle liefert einen Überblick über die Brennstoffverbrauchsdaten und Brennstoffkosten für die Jahre **2012, 2013 und 2014** in der Sportanlage.

Verbrauchsdaten	Einheit	2012	2013	2014
Verbrauch:	[kWh]	146.812	77.881	82.151
Verbrauch:	[Liter]	21.590	11.453	12.081
Gesamtkosten	[€]	16.809,39	7.750,07	7.384,46
Realer Preis / kWh	[€/kWh]	0,11450	0,09951	0,08989

Daten für Brennstoffverbrauch und Brennstoffkosten

Im Mittel von drei Jahren werden ca. 102.281 kWh an Heizenergie, für die Wärmeversorgung und Warmwasserbereitung, benötigt.

Realer Preis im Mittel aus drei Jahren:0,10130 €/kWh

Berechnung des Heizenergieverbrauchskennwertes für Nichtwohngebäude laut Bekanntmachung des Bundesministeriums für Verkehr, Bau und Stadtentwicklung vom 30.07.2009.

Angaben der Bezugsflächen für die Berechnung des Energiekennwertes	Länge/m	Breite/m	Fläche/m²
Vereinsheim, Anbau	13,00	6,00	78,00
Vereinsheim	17,00	7,94	134,98
Vereinsheim	13,99	8,94	125,08
Vereinsheim	17,00	7,99	135,83
Vereinsheim	13,99	8,99	125,77
Gesamt Bruttoges	599,66		
Gesamt Nettoges	545,70		

Auswertung der Bezugsflächen

Angaben für die Berechnung des Heizenergieverbrauchswertes	Berechnungseinheit:	Zahlenwert
Gesamtwasserverbrauch in der Sportanlage	m³ (im Mittel aus drei Jahren)	geschätzt 500,00
Warmwasserverbrauch = 40% Warmwasseranteil im Jahr	m³	200,00
Energiebedarf für die Warmwassererzeugung = 57 kWh für 1m³ Warmwasser	57 kWh	57
Gesamtenergie für die Warmwassererzeugung	kWh	11.400,00
Berechnung o	des Heizenergieverbrauchswertes (kWh/m²/a)	
Gesamtenergieverbrauch der Sportanlage	kWh (im Mittel von drei Jahren)	102.281,00
Gesamtenergieverbrauches der Warmwasserzeugung	kWh	- 11.400,00
Bereinigter Energieverbrauch	kWh	= 90.881,00
Klimafaktor nach PLZ (60437) (EnEV 2014)	(im Mittel aus 2012, 2013 , 2014)	1,14
witterungsbereinigter Gesamtenergieverbrauch	kWh	= 103.604,34
Gesamtenergieverbrauches der Warmwasserzeugung	kWh	+ 11.400,00
Gesamtenergieverbrauch	kWh	= 115.004,34
Bruttogeschossfläche (BGF 100%)	m²	599,66
Nettogeschossfläche (NGF 91%)	m²	545,70
Heizenergieverbrauchskennwert	kWh/(m² NGF)/a	211

Auswertung des Heizenergieverbrauchskennwertes für Nichtwohngebäude

Der Heizenergieverbrauchskennwert Ihrer kompletten Sportanlage liegt bei 211 kWh/m²/a.

Der Heizenergieverbrauch ihrer kompletten Sportanlage liegt über dem Bereich der Vergleichswerte der Bekanntmachung des Bundesministeriums.

In der Tabelle "Vergleichswerte Heizung und Warmwasser (Mittelwert) für verschiedene Sportanlagen" finden Sie eine Übersicht über die Einstufung der verschiedenen Gebäudetypen.

Bezeichnung der Sportanlage	Vergleichswerte Heizung und Warmwasser nach EnEV 2014 (kWh/m²/a)
Sporthallen	120
Mehrzweckhallen	240
Schwimmhallen, Hallenbäder	385
Sportheim (Vereinsheim)	80
Sportheim / Wohnungen im Sportheim	80
Fitnessstudios	100
Gaststätten / Speisegaststätten	205

Daten der Vergleichswerte Heizung und Warmwasser für die verschiedenen Sportanlagen (nicht nach dem Bauwerkzuordnungskatalog katalogisiert).

Handlungsbedarf auf dem Energiesektor besteht derzeit wegen der notwendigen Einhaltung der Emissionswerte und der damit verbundenen Umstellung auf moderne Heizungsanlagen zur Verringerung der CO₂ Emissionen und zur Verbesserung des Klimaschutzes.

Die Tabelle zeigt im Vergleich den Primärenergieeinsatz (Liter / kg / m³ / kWh / Schüttraummeter) zur erzielten Endenergie (kWh) und die CO² Emissionen (g/kWh).

Brennstoff	Primärenergieeinsatz	Endenergie [kWh]	CO ₂ - Emission [g/kWh]
Leichtes Heizöl EL	1 Liter	10,0	358
Flüssiggas	1 Liter	6,8	331
Erdgas H	1 m³	10,0	255
Heizstrom	1 kWh	1,0	789
Holz (lufttrocken)	1 kg	4,1	/
Holzpellets	1 kg	5,0	/
Holzhackschnitzel	1 Schüttraummeter	650,0 pro SRm	/

Emissionen von Energieträgern

Empfehlung Heizenergie:

Kurzfristig:

• Regelmäßige Aufzeichnung der Verbräuche (z.B. halbjährlich).

2.2.2 Wasserverbrauch der Sportanlage

In der Tabelle sind der Frischwasserverbrauch und die Wasserkosten der Jahre **2012**, **2013 und 2014** dargestellt. Die Angaben beziehen sich auf die gesamte Sportanlage.

Im Mittel aus drei Abrechnungsjahren werden pro Jahr ca. 2.946 m³ an Trinkwasser verbraucht.

Abrechnungszeitraum	Einheit	2012	2013	2014
Frischwasser	[m³]	3.049	3.126	2.663
Abwasser	[m³]	Keine Angaben	Keine Angaben	Keine Angaben
Gesamtkosten	[€]	4561,26	4.304,05	4.956,17

Daten zum Wasserverbrauch nach Abrechnungszeiträumen

Generell teilt sich der Wasserverbrauch in Sportanlagen in die beiden Bereiche Sanitärwasser und Platzbewässerung auf.

In der Sportanlage sind Wassernebenzähler der Stadt installiert.

Wasserverteilung Messstelle	Einheit	2012	2013	2014
Haus Fiebig	[m³]	Keine Angaben	Keine Angaben	Keine Angaben
Wohnhaus	[m³]	Keine Angaben	Keine Angaben	Keine Angaben
Beregnung	[m³]	Keine Angaben	Keine Angaben	Keine Angaben
Haus	[m³]	Keine Angaben	Keine Angaben	Keine Angaben

Verteilung des Wasserverbrauchs

Dem Wasserverbrauch im Sanitärbereich kommt von der Kostenseite besondere Bedeutung zu, da es sich hier auch um Kosten für Frisch-, Ab- und Warmwasser handelt.

Die Kenntnis des Wasserverbrauchs für die Platzbewässerung ist die Grundlage für die Befreiung von den Abwassergebühren für die Beregnungswassermenge.

Empfehlung Wasserverbrauchserfassung:

Kurzfristig:

♦ Regelmäßige Aufzeichnung der Verbräuche (z.B. halbjährlich).

Regenwasser

Zurzeit wird in vielen Kommunen eine Niederschlagsabgabe für versiegelte Flächen eingeführt. Durch die Niederschlagsabgabe können Kosten pro m² versiegelter Fläche in Höhe von 0.50 bis 1 Euro pro Jahr entstehen.

Zum Wohl der Umwelt und dem Schutz des Grundwassers, aber auch zur Reduzierung der Abgaben für versiegelte Flächen, sollte das Regenwasser von versiegelten Flächen nicht dem Abwassernetz sondern dem Boden zur Versickerung direkt zugeführt werden. Hierfür sind auf den Sportgeländen in der Regel ausreichend Möglichkeiten vorhanden. Bei Parkplätzen hingegen ist dies nicht zu empfehlen.

Gebühren sparen!

Ob der Nutzer nun als Betriebskosten die gesamte Wassergebühr oder nur den Anteil für Trinkwasser spart, liegt an der Satzung der Kommunen und der dahinter stehenden politischen Einstellung. Das kommunale Recht lässt eindeutig beides zu. Nur Einklagen kann der Verein eine Gebührenbefreiung für genutztes Regenwasser nicht. In Kombination mit einer Versickerung des Überlaufes können mittlerweile in jeder Kommune zusätzlich Gebühren für die Ableitung des Niederschlages eingespart werden.

Tipp

Prüfen Sie ob eine Versickerung von Regenwasser auf dem Gelände der Sportanlage möglich ist.

Regenwasser kann auch als Brauchwasser für (Sportplatz- und Freiflächenbewässerung, Toilettenspülung und Schuhwaschplätze) genutzt werden.

Da aufgrund der hohen Spitzenlasten bei der Bewässerung von Sport- und Freianlagen große Mengen Wasser in relativ kurzer Zeit benötigt werden, ist eine Nutzung des Regenwassers für die Bewässerung nur unter Abwägung des Kosten-Nutzen-Verhältnisses zu empfehlen.

Zur Regenwassernutzung in den Sanitäranlagen müssen die Toiletten mit zusätzlichen Leitungen (Kunststoff) nachgerüstet werden.

Auch hier sollte eine Kosten-Nutzen-Analyse durchgeführt werden.

Kosten/Nutzen

Anzustreben ist, bei möglich geringem Investitionsaufwand einen hohen Grad an Trinkwassereinsparung zu erzielen. Durch einzelne, heftige Niederschlagsergebnisse wird selbst der größte Speicher überlaufen.

Checkliste für die Planung:

- Können alle Dachflächen angeschlossen werden?
 Dachentwässerung und Höhenlage des Speicherüberlaufes prüfen.
- Ertrag überschlägig ermitteln: Deutscher Mittelwert ca. 774 Milliliter (entspricht 774 Liter/m²) multipliziert mit der zur Verfügung stehenden Dachfläche (Länge x Breite auf Höhe der Dachtraufe). Ca. 75 % davon ist der verfügbare Ertrag. 25 % Verlust entstehen durch Verdunstung oder Speicherüberlauf.

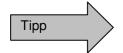
Sportanlage Bonames

- 3. Speichergröße und Bedarf ermitteln: Sind ertrag und Bedarf annähernd gleich (max. 25 % Abweichung), liegt die wirtschaftlich sinnvolle Größe für Außenspeicher bei ca.8 %, für Innenspeicher bei etwa 5 % des Jahresbedarfes. Ist die Differenz größer, sollte ein Speicher kleiner als 5 % gewählt werden.
- 4. Aspekte zur Auswahl des Anlagensystems: Außenspeicher werden bevorzugt, wenn Kellerräume zu schade für die Lagerung von Regenwasser sind. Innenspeicher sind eine Notlösung, wenn Bauarbeiten außerhalb der Gebäudehülle nicht möglich oder zu kostspielig sind.
- Gibt es kommunale Förderprogramme? Anträge vor dem Bau stellen und die Bedingungen der Förderprogramme beachten
- Das Wasserversorgungsunternehmen und das Gesundheitsamt zu informieren ist gesetzliche Pflicht eines jeden Betreibers. Die Mitteilung muss vor Baubeginn erfolgen.
- 7. Kann der Speicherüberlauf versickern? Hier sollte eine Absprache mit dem Tiefbauamt getroffen werden, ob der Anschluss an das Kanalnetz zulässig und gebührenfrei ist (auf eine Rückstausicherung achten). Gegebenenfalls mit einem zweiten Speicher eine verzögerte Ableitung erzielen.
- 8. Vorsorge gegen eindringendes Wasser bei der Rohrdurchführung durch die Außenwand des Gebäudes treffen. Nur zugelassene Rohrdurchführungssysteme verwenden.
- Kennzeichnung der Zapfstellen und der Regenwasserleitungen, soweit sie nicht erdverlegt sind, ist unerlässlich. Sie müssen farblich unterschiedlich zum Trinkwassernetz gekennzeichnet werden.

Empfehlung Regenwasser / Versiegelungsabgabe: Kurzfristig:

 Zur Reduzierung der Versiegelungsabgabe und aus ökologischen Gründen wird das Versickern von Niederschlagswasser empfohlen. Geeignet hierfür sind Sickergruben, Zisternen mit integrierter Versickerungsschicht, Rückhaltebecken oder künstlich angelegte Teichbiotope.

2.2.3 Stromverbrauch der Sportanlage


Die nachfolgende Tabelle zeigt die Stromverbrauchsdaten in der Sportanlage mit den Gesamtkosten der Jahre **2012**, **2013 und 2014**.

Verbrauchsdaten nach Jahren	Einheit	2012	2013	2014
Verbrauch	[kWh]	22.095	18.511	30.770
Gesamtkosten	[€]	5.511,33	5.305,63	7.544,96
Realer Preis / kWh	[Cent/kWh]	24,95	28,66	24,52

Daten für Stromtarif und Stromverbrauch

Im Mittel aus drei Abrechnungsjahren werden pro Jahr ca. 23.792 kWh an Strom verbraucht.

Realer Preis im Mittel aus drei Jahren: 0,26043 €/kWh

In Sportstätten macht es Sinn, insbesondere in verbrauchsintensiven Bereichen wie Flutlicht, etc. Strom-Nebenzähler installiert zu haben und über die einzelnen Zählerstände regelmäßig Buch zu führen.

In der Sportanlage **sind** Stromnebenzähler der Stadt installiert.

Berechnung des Stromverbrauchskennwertes für Nichtwohngebäude laut Bekanntmachung des Bundesministeriums für Verkehr, Bau und Stadtentwicklung vom 30.07.2009.

Angaben für die Berechnung des Stromverbrauchswertes	Berechnungseinheit:	Zahlenwert
Gesamtstromverbrauch in der Sportanlage	kWh (im Mittel aus drei Jahren)	23.792
Abzug Flutlichtanlage	kWh (im Mittel aus drei Jahren)	25 Stunden / Woche * 25 Wochen * 16 kW = 10.000 kW
Rechenwert für den Energiekennwert	kWh (im Mittel aus drei Jahren)	13.792
Bruttogeschossfläche (BGF 100%)	m²	599,66
Nettogeschossfläche (NGF 91%)	m²	545,70
Stromverbrauchskennwert	kWh/(m² NGF)/a	26

Tabelle und Auswertung des Stromverbrauchskennwertes für Sportanlagen

Der Stromverbrauchskennwert Ihrer kompletten Sportanlage liegt bei 26 kWh/m²/a.

Der Stromverbrauch ihrer kompletten Sportanlage liegt über dem Bereich der Vergleichswerte der Bekanntmachung des Bundesministeriums.

Sportanlage Bonames

Bezeichnung der Sportanlage	Vergleichswerte (Strom) nach EnEV 2014 (kWh/m²/a)
Sporthallen	35
Mehrzweckhallen	40
Schwimmhallen, Hallenbäder	105
Sportheim (Vereinsheim)	20
Fitnessstudios	120
Speisegaststätten / Restaurants	95

Daten der Vergleichswerte Strom für die verschiedenen Sportanlagen (nicht nach dem Bauwerkzuordnungskatalog katalogisiert).

Seit April 1998 hat jeder Stromkunde das Recht, sich den günstigsten Stromanbieter selbst auszuwählen. Durch den Wegfall der Preisbindung bei den Stromtarifen wird der Strombezugspreis zur Verhandlungssache. Der Verbraucher hat aber auch die Möglichkeit zwischen konventionellem Strom und/oder alternativem Strom, der schadstofffrei und klimaneutral aus Sonne, Wind, Wasser, Biomasse und Erdwärme hergestellt wird, zu entscheiden.

Gesetzliche Grundlage ist das neue Energiewirtschaftsrecht. Aufgrund der Liberalisierung des Strommarktes durch dieses Gesetz ergeben sich seit September 1999 Einsparpotentiale durch die Anpassung der Stromtarife an den Verbrauch in der Sportanlage.

Der Preis pro Kilowattstunde in Ihrer Sportanlage ist als **durchschnittlich** einzustufen.

Durch die Wahl eines günstigeren Tarifs können die direkten Verbrauchskosten gesenkt werden.

Empfehlung Stromtarife:

Kurzfristig:

- Der reale Preis pro Kilowattstunde von 24,52 Cent/kWh ist als durchschnittlich einzustufen.
- Der Bedarf an elektrischer Energie ist als leicht zu hoch einzustufen.
- Regelmäßige Aufzeichnung der Verbräuche (z.B. halbjährlich).

3. Bestandsaufnahme und Auswertung

3.1 Nutzung der Sportanlage

Die Daten und Ergebnisse aus dem Öko-Check werden entsprechend der Methodik des Öko-Checks dargestellt, d.h. sie werden in Themenbereiche gegliedert und in den Unterkapiteln einzeln betrachtet.

Der Wasserverbrauch teilt sich in Sportanlagen in zwei Bereiche auf:

Sanitäre Bereiche:

Die spezifischen Verbrauchszahlen sind abhängig von der Vereinsgröße und liegen bei einigen hundert Kubikmeter Trinkwasser pro Jahr.

Sportplatzbewässerung:

Die spezifischen Verbrauchszahlen liegen bei 100 bis 3500 m³ pro Jahr und Freianlage.

Nutzung der Sportanlage

In Ihrer Sportanlage finden pro Woche an **7 Tagen** Trainingseinheiten oder Punktspiele statt.

Ihre Sportanlage wird pro Woche an **7 Tagen** zwischen **4 und 8 Stunden** pro Tag genutzt.

Ihre Sportanlage wird ganzjährig genutzt.

3.2 Heizungsanlage

3.2.1 Heizungsanlagen Systemvergleich

In der folgenden Tabelle werden Vor- und Nachteile der verschiedenen Heizungssysteme qualitativ dargestellt.

Bei der Bewertung handelt es sich um allgemeine Erfahrungswerte, die eine erste Orientierung geben können, doch stark von den örtlichen Gegebenheiten abhängen können.

Jedes Grad Celsius Raumtemperatur weniger spart bis zu 6% Heizkosten.

■Variante	Energieträger	Wirtschaftlichkeit	Ökologie	Komfort	Platzbedarf (mit Tank)
Nachtspeicherheizung	Strom			-	0
Tieftemperaturheizung	Heizöl	++	0	+	-
Niedertemperaturheizung	Heizöl	+	0	+	-
Brennwertheizung	Heizöl	++	+	+	-
Niedertemperaturheizung	Flüssiggas	+	0	++	-
Brennwertheizung	Flüssiggas	++	+	++	-
Niedertemperaturheizung	Erdgas	+	0	++	+
Brennwertheizung	Erdgas	++	+	++	+
Elektrische Wärmepumpe	Strom-Umgebungswärme	0	0	++	0
Holzpelletsheizung	Holzpellets (Presslinge)	+	++	++	-
Holzvergaserkessel	Holzscheite	0	++	+	
Fernwärmeanschluss	Fernwärme	+	+	++	++
Blockheizkraftwerk (BHKW)	Heizöl	+	++	+	-
Blockheizkraftwerk (BHKW)	Flüssiggas	+	++	+	-
Blockheizkraftwerk (BHKW)	Erdgas	+	++	+	+
Solarunterstützung	Sonnenenergie		++	-	-

Bewertung: ++ sehr gut, + gut, o neutral, - ungünstig, -- sehr ungünstig

Übersicht zu den Vor- und Nachteilen verschiedener Heizungssystemen

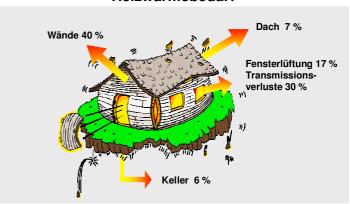
Sportanlage Bonames

Qualitative Unterschiede verschiedener Heizungssysteme.

Die nachfolgende Tabelle zeigt die qualitativen Unterschiede zwischen Erdgas-, Heizöl- und Holz befeuerten Anlagen.

	Stückholzfeuerung	Pellet Feuerung	Hackschnitzelfeuerung	Erdgasheizung	Ölheizung
Anlagenkosten	mittel	hoch	sehr hoch	niedrig	mittel
Brennstoffkosten	gering	mittel	gering	hoch	hoch
Brennstoffraumbedarf	mittel	mittel bis hoch	hoch bis sehr hoch	entfällt	mittel bis hoch
Bedienungsaufwand	hoch	gering	gering	sehr gering	gering
Automatisierungsgrad	Lagerhaltung 1-3 mal täglich nachlegen Betrieb von Hand	Lagerhaltung Befüllung 1-2 mal jährlich Betrieb automatisch	Lagerhaltung Befüllung 2-10 mal jährlich Betrieb automatisch	voll auto- matisch	Befüllung 1-2 mal jährlich Betrieb automatisch
Entaschung	manuell (täglich)	Vollautomatisch (auf Wunsch) Halbautomatisch (1-2 mal die Woche)	Vollautomatisch (auf Wunsch) Halbautomatisch (1-2 mal die Woche)	entfällt	entfällt
Wartung / Reinigung /Instandhaltung	gering	gering	gering	sehr gering	gering

Qualitative Unterschiede zwischen Holzheizungen und konventionellen Heizsystemen


Ein zentraler Punkt hinsichtlich des Klimaschutzes ist die Gebäudeerwärmung. Ihre Sportanlage verfügt über das in der Tabelle aufgeführten Heizungssystemen (Spalte 1), welches mit den in Spalte 2 gekennzeichneten Brennstoff(en) betrieben wird.

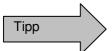
Heizungsbetrieb	Heizungssysteme		e Brennstoffe		
	Х	Zentral	/	Erdgas	
	/	Dezentral	X	Flüssiggas	
	/	Fernwärme	/	Heizöl	
	/	Erdwärme	/	Kohle	
Systeme und Brennstoffe			/	Strom	
, and the second			/	Holzpellets	
	/		/	Scheit-Stückholz	
			/	Hackschnitzel	
			/	keine	

Daten zu den Heizungssystemen und Brennstoffen

3.2.2 Heizungsanlage in der Sportanlage

Heizwärmebedarf

Die Daten Ihrer Heizungsanlage werden vom Bezirksschornsteinfeger in der Regel einmal im Jahr im so genannten Schornsteinfegerprotokoll festgehalten. Ihre Angaben hierzu sind nachfolgend zu entnehmen.


Betriebsdaten der Heizungsanlage (neues Schornsteinfegerprotokoll)	Heizungsanlage
Hersteller	Buderus
Тур	G 324
Baujahr	1989
Nennwärmeleistung [kW]	116
Art der Anlage	Heizung mit Brauchwasser
Anlage in Ordnung	ja

Betriebsdaten des Heizungssystems

Unabhängig davon, ob ohnehin Sanierungen geplant sind, führt die Energieeinsparverordnung (EnEV) (aktuelle Fassung) Verpflichtung für Hauseigentümer ein, Nachbesserungen vorzunehmen.

Heizkessel

Am 16.10.2013 hat die Bundesregierung die EnEV 2014 mit allen vom Bundesrat geforderten Auflagen beschlossen. Sie wird am 01.05.2014 in Kraft treten. Hierbei ergibt sich folgende Änderung im Bereich der Heizungsanlagen: Austausch alter Heizkessel, so genannte Konstant-Temperaturkessel, die älter als 30 Jahre sind.

Anlagen die länger als 20 Jahre in Betrieb sind, verursachen erheblich höhere Brennstoffkosten als moderne Anlagen. Ihr Ersatz sollte frühzeitig geplant werden. Die Einsparpotentiale bei Erneuerung der Heizungsanlage liegen durchschnittlich bei ca. 20 %. Wird der Stand der Technik eingesetzt (Brennwert und thermische Unterstützung durch eine Solaranlage) liegt das Einsparpotenzial mit 30 und 40 % noch wesentlich höher.

Sportanlage Bonames

Besonders wichtig bei der Modernisierung einer Heizungsanlage ist eine vorausschauende Planung. Nur wenn rechtzeitig Vorkehrungen für eine Heizungserneuerung ergriffen werden, kann ein Gesamtkonzept, welches aus einer optimierten Dimensionierung, Verbesserung des Wärmeschutzes, Nutzung von Solaranlagen zur Warmwasserbereitstellung besteht, erstellt werden. Dies ist insbesondere vor dem Hintergrund der langen Betriebszeit einer Heizungsanlage, von 20 bis 30 Jahren, von Bedeutung.

Ohne technisches Gesamtkonzept ist die Gefahr groß, dass die Heizungsanlage falsch dimensioniert wird, veraltete Technik eingesetzt und Komponenten mehrfach nachgebessert werden müssen.

Empfehlung Zentralheizung:

Kurzfristig:

- Durchführung einer Wärmebedarfsberechnung.
- Erneuerung der Heizungsanlage.
- ♦ Bei einem Flüssiggasanschluss sollten grundsätzlich Brennwertgeräte eingesetzt werden.
- Der "Heizungsverantwortliche" muss technisch eingewiesen und geschult sein, um die Anlage fachgerecht bedienen können. Dieser Zugriff sollte, nur dafür ausgewählten Personen und ihren Vertretern möglich sein.
- Ein Wartungsvertrag ersetzt keinen Heizungsverantwortlichen, da nur dieser die Heizungssteuerung dem Bedarf optimal anpassen kann.

Heizungsanlage der Sportanlage

3.2.3 Heizkreisläufe

Heizkreisläufe	HK / VH	HK / Umkleide	HK / Altbau
Pumpenleistung [kW]	0,060	0,066	0,040
Pumpenstufe	2	3	Stufenlos
Gesteuert [ja/nein]	Ja	Ja	Ja
Mischventil [ja/nein]	Ja	Ja	Ja
Heizkreistemperatur [°C]	25	50	60

Daten für Heizkreise

Sportanlage Bonames

Die Heizkreispumpen sind nicht mit Stufenschaltern ausgestattet oder elektronisch regelbar. Eine Faustregel besagt, dass die Pumpenleistung 0,2% der Kesselleistung laut Typenschild betragen sollte.

Beispiel: 20 kW*0,002=0,04 kW bzw. 40 W.

Probieren sie aus, ob auch bei niedriger Pumpenleistung die Heizkörper ausreichend warm werden. Die Energieeinsparverordnung (EnEV) (aktuelle Fassung) fordert geregelte Heizungspumpen (§ 12 Abs.3.).

Wer Umwälzpumpen in Heizkreisen von Zentralheizungen mit mehr als 25 Kilowatt Nennwärmeleistung erstmalig einbaut oder einbauen lässt oder vorhandene ersetzt oder ersetzen lässt, hat Sorge zu tragen, dass diese so ausgestattet oder beschaffen sind, dass die elektrische Leistungsaufnahme dem betriebsbedingten Förderbedarf selbständig in mindestens drei Stufen angepasst wird, soweit sicherheitstechnische Belange des Heizkessels dem nicht entgegenstehen.

Parallel zur Energieeinsparverordnung (EnEV) (aktuelle Fassung) ist für die Angabe bzw. Ermittlung der anlagentechnischen Kennwerte die DIN-V 4701 – Teil 10 in Kraft getreten. (Die DIN-V 4701 – Teil 10 wird benötigt, wenn man ermitteln möchte, ob ein Gebäude inklusive der installierten Anlagentechnik den in der Energieeinsparverordnung (EnEV) (aktuelle Fassung) vorgegebenen Primärenergie-Grenzwert einhält).

Die darin aufgeführte Hilfsenergiebewertung basiert auf Daten leistungsgeregelter Pumpen bzw. es kann bei der individuellen Ermittlung mit einem Vorteil bis zu 30 % gegenüber ungeregelten Pumpen gerechnet werden. (Quelle: Merkblatt Energieeinsparverordnung (EnEV)(aktuelle Fassung)

Empfehlung Heizkreispumpen:

Kurzfristig:

♦ Planen Sie bei einer Heizungserneuerung, die Erneuerung des Heizkreisverteilers mit dem Einbau von elektronischen Heizkreispumpen und getrennte Heizkreisläufen mit ein.

Heizkreisverteiler der Sportanlage

Sportanlage Bonames

Der Wasserdruck im Heizkreissystem wurde bei der Bestandsaufnahme erfasst (Spalte 1). Spalte 2 und 3 enthalten Angaben über Isolation und Isolationsstärke der Heizkreisleitungen.

	Heizkreisleitungen	Wasserdruck im Heizkreis		Isolierung der Heizleitungen		Isolationsstärke [mm]	
	Wasserdruck, Isolierung und Isolierstärke		Zu niedrig	Х	Ja	/	< 10
			Normal	/	Nein	Х	10 – 30
			Zu hoch	/	Teilweise	/	> 30

Wasserdruck und Isolation der Heizkreisleitungen

Die Energieeinsparverordnung (EnEV) (aktuelle Fassung) fordert die Begrenzung der Wärmeabgabe der Wärmeverteilungs- und Warmwasserleitungen.

Die Energieeinsparverordnung ersetzt die bisherige Heizungsanlagen-Verordnung (HeizAnLV) und die Wärmeschutzverordnung (WSchVO).

Beim Neubau und bei der Modernisierung- oder Sanierung von Wärmeleitverteilungs- und Warmwasserleitungen sowie deren Armaturen in Gebäuden sind die Dämmvorschriften nach der Energieeinsparverordnung (EnEV) (aktuelle Fassung) zu beachten. (Quelle: UNIPIPE Systeminformationen)

Mindest- Dämmanforderung	Zeile	Art der Leitungen/Armaturen	Mindestdicke der Dämmschicht, bezogen auf eine Wärmeleitfähigkeit von Lambda =0,035 W/(m · K)
100 %	1	Innendurchmesser bis 22 mm	20 mm
100 %	2	Innendurchmesser über 22 mm bis 35 mm	30 mm
100 %	3	Innendurchmesser über 30 mm bis 100 mm	gleich Innendurchmesser
100 %	4	Innendurchmesser über 100 mm	100 mm
50 %	5	Leitungen und Armaturen nach den Zeilen 1 bis 4 in Wand- und Deckendurchbrüchen, im Kreuzungsbereich von Leitungen, an Leitungsverbindungsstellen, bei zentralen Netzverteilern	die Hälfte der Anforderungen der Zeilen 1 bis 4
50 %	6	Leitungen von Zentralheizungen nach den Zeilen 1 bis 4, die nach Inkrafttreten dieser Verordnung in Bauteilen zwischen beheizten Räumen verschiedener Nutzer verlegt werden	die Hälfte der Anforderungen der Zeilen 1 bis 4
6 mm	7	Leitungen nach Zeile 6 im Fußbodenaufbau	6 mm

Wärmedämmung von Wärmeverteilungs- und Warmwasserleitungen sowie Armaturen

Empfehlung Wasserdruck und Isolation:

Kurzfristig:

 Kontrollieren Sie ihren Leitungsdruck mindestens zweimal j\u00e4hrlich und f\u00fcllen Sie gegebenenfalls Wasser nach.

> Der Wärmetauscher sollte der Nutzungsbedingung angepasst sein. Bei Neuanlagen sollte hier unbedingt der Fachmann zu Rate gezogen werden.

Sportanlage Bonames

Auch bei der Bedienung von Thermostatventilen wird viel falsch gemacht. Um das Aufheizen von Räumen zu beschleunigen, werden Ventile fälschlich oft höher "aufgerissen". Dies ist aber faktisch kaum der Fall, stattdessen stellen sich nach einiger Zeit (bei Abwesenheit) überhöhte Raumtemperaturen ein, da die Rückstellung der Ventile üblicherweise vergessen wird.

Um ein überhöhtes Aufdrehen zu verhindern, lassen sich die Ventile in der Regel nach oben hin feststellen. Als günstig erweisen sich hier Ausführungen, bei denen die Arretierung nicht per Hand, sondern mittels Werkzeug vorgenommen werden kann.

Fest arretierte Geräte, so genannte "Behördenmodelle", die insb. in öffentlichen Einrichtungen, in denen mit viel Missbrauch zu rechnen ist, eingesetzt werden, sind nur mittels Werkzeug verstellbar.

Ein Nachteil ist, dass die Ventile ohne Werkzeug nicht heruntergedreht werden können, wenn es Gästen zu warm ist bzw. beim Lüften oder bei Nichtbelegung der Räume. Ventile, die ganzjährig in einer Stellung bleiben, drohen mitunter festzusetzen, bewegen Sie die Ventilköpfe bei Gelegenheit kurz, um dies zu verhindern.

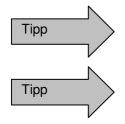
Beispielthermostat mit Nullstelle							
Ziffer	0	*	1	2	3	4	5
Raumlufttemperatur (°C)	1	6	12	16	20	24	28

Einstellbereiche von Thermostatventilen

Heizkörper	Art der Wärmetauscher			Thermostate	
	/	Radiatoren	X	Ja	
	X	Heizkörper	/	Nein	
Art und Steuerung	/	Luftheizgeräte	/	Teilweise	
	/	Fußbodenheizung	/	Raumfühler	
	/	Deckenstrahlungsheizung	/	1	

Daten für Wärmetauscher und Thermostate

Empfehlung Thermostate:


Kurzfristig:

Rüsten Sie Ihre Heizkörper mit nicht verstellbaren Thermostatventilen (Behördenmodelle) nach. Durch den Einsatz moderner Armaturen wird Energie eingespart.

3.2.4 Heizungssteuerung

Die nachfolgende Auswertungsauflistung gibt Ihnen Auskunft über die Steuerung Ihrer Heizungsanlage und der Schaltzeiten. (Die Schaltzeiten sind dem Bedarf anzupassen)

- Die Heizungsanlage ist automatisch gesteuert.
- Die Uhrzeit der Heizungsanlage ist korrekt eingestellt.
- Die Zentralheizung ist nicht mit einer modernen Wochensteuerung ausgerüstet.
- Die Raumtemperatur wird nachts abgesenkt.
- Die Steuerung ist nicht dem Wochenbelegungsplan der Sportanlage angepasst.

Eine optimale Heizungsnutzung kann durch eine genaue Abstimmung zwischen den Sporttreibenden und dem Heizungsverantwortlichen erzielt werden.

Eine manuelle Steuerung ist bei variierendem Belegungsplan sinnvoll, vorausgesetzt sie wird vom Heizungsverantwortlichen sorgfältig betrieben.

Empfehlung Heizungssteuerung:

Kurzfristig:

◆ Eine Heizungsanlage sollte gemäß dem Wochenbelegungsplan programmgesteuert sein.

3.2.5 Einsatzmöglichkeiten eines Blockheizkraftwerks BHKW's (Kraft-Wärme-Kopplung)

In Ihrer Sportanlage ist kein BHKW im Einsatz.

Der Einsatz eines BHKW's wird für diese Anlage **nicht empfohlen**, da die Rahmenbedingungen für den Einsatz eines BHKW als **ungünstig** bewertet werden. Ein BHKW erzeugt gleichzeitig Strom und Warmwasser. Dies wird als Kraft-Wärme-Kopplung bezeichnet. Die eingesetzte Primärenergie wird so optimal ausgenutzt.

 Zu wenige Laufzeiten für ein kleines BHKW in der Sportanlage.

BHKW

Blockheizkraftwerke (BHKW) sind dezentrale, kompakte Energiewandlungsanlagen, die Strom und Nutzwärme im brennstoffsparenden, umweltfreundlichen Kraft-Wärme-Kopplungsbetrieb (KWK) bereitstellen. Dezentral heißt, dass die BHKW - Anlagen am Ort des Energienutzers für dessen Stromund Wärmebedarf maß genau installiert werden.

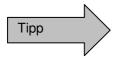
Sportanlage Bonames

Bei der dezentralen Energieversorgung treten keine Strom- und Wärme- Leitungsverluste auf, da die Energie direkt an dem Ort bereitgestellt wird, wo sie auch gebraucht wird. Schon aus diesen Gründen sind BHKW - Anlagen immer wirtschaftlicher. Die Wirtschaftlichkeit wird von den Anlagentypen maßgeblich bestimmt.

Sportanlagen sind aufgrund des relativ konstant hohen Warmwasserbedarfs für die Installation eines BHKW geeignet.

Ein BHKW sollte so ausgelegt sein, dass es auf mindestens 4.500 bis 5.000 Betriebsstunden pro Jahr kommt.

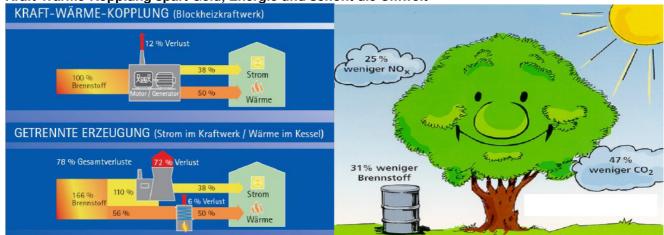
Für die Planung eines BHKW ist eine genaue Verbrauchserfassung bei Nachrüstungen oder eine Verbrauchsabschätzung bei Neubauten unumgänglich, um die richtige Dimensionierung der Anlage zu gewährleisten.


Anhand von Verbrauchswerten und der Warmwassertemperatur kann die Energiemenge, die für die Warmwasserbereitung benötigt wird, berechnet werden. Bei einem gut dimensionierten BHKW wird die Warmwasserbereitung in den Sommermonaten und in der Übergangszeit, ausschließlich von diesem übernommen. Der Heizkessel kann dann in den Sommermonaten abgeschaltet werden.

Für die Förderung von Blockheizkraftwerken stehen, standortspezifisch, verschiedene Förderprogramme zur Verfügung.

Auslegung und Planung sollten, nach Aufnahme der Daten, von Fachbetrieben durchgeführt werden. Kompetente Fachplaner können wir Ihnen gerne nennen.

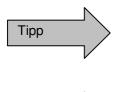
Die Ermittlung des Warmwasserbedarfs sollte mit Hilfe einer Wasseruhr im Kaltwasserzulauf des Warmwasserspeichers und der täglichen Erfassung der Verbrauchszahlen, über einen Zeitraum von etwa drei Wochen in den Sommermonaten, erfolgen.



Der Einsatz eines BHKW, bei Notwendigkeit eines zusätzlichen Wärmeerzeugers, sollte aus ökologischen Gründen immer geprüft werden. Die hohen Stillstands Verluste des großen Kessels während der Sommermonate und in der Übergangszeit werden so vermieden. Durch den zusätzlich erzeugten Strom sollte sich die Mehrinvestition innerhalb weniger Jahre amortisieren.

Der Einsatz eines BHKW, bei Notwendigkeit eines zusätzlichen Wärmeerzeugers, sollte aus ökologischen Gründen immer geprüft werden. Die hohen Stillstands Verluste des großen Kessels während der Sommermonate und in der Übergangszeit werden so vermieden. Durch den zusätzlich erzeugten Strom sollte sich die Mehrinvestition innerhalb weniger Jahre amortisieren.

Kraft-Wärme-Kopplung spart Geld, Energie und schont die Umwelt


3.3 Warmwasser

3.3.1 Zentrale Warmwasserbereitung

In Verbindung mit der zentralen Heizungsanlage wird das Warmwasser zentral bereitgestellt.

Warmwasserspeicher	Warmwasserspeicher
Hersteller	Viessmann
Тур	Verti Cell
Baujahr	Keine Angaben
Volumen [Liter]	500
Temperatur [°C]	60
Nennwärmeleistung [kW]	65

Daten für Warmwasserspeicher

Warmwasserspeicher, die ein Alter von 15 oder mehr Jahren aufweisen, entsprechen nicht mehr dem heutigen Standard. In der Regel sind sie überdimensioniert und schlecht isoliert.

Bei einer Speichererneuerung sollte das Speichervolumen neu berechnet werden. Hierzu ist es wichtig, dass Sie den tatsächlichen Warmwasserbedarf möglichst genau kennen. Diesen Wert sollten Sie durch den Einsatz eines konventionellen Wasserzählers im Kaltwasserzulauf des Warmwasserspeichers ermitteln.

> Die folgenden Auswertungsauflistung gibt Ihnen Auskunft über die Steuerung ihrer Warmwasserbereitung und ob die Schaltzeiten dem Bedarf entsprechend richtig angepasst sind.

- Die Warmwasserbereitstellung ist mit der Heizungsanlage gesteuert.
- Die Warmwasserbereitung ist zeitgesteuert.
- Die Warmwasserbereitstellung wird nicht durch eine Zirkulationspumpe unterstützt.
- Die Steuerung der Warmwasserbereitstellung **ist nicht dem** Wochenbelegungsplan der Sportanlage angepasst.

Sportanlage Bonames

Warmwasserleitungen		Isolierung der Warmwasserleitungen		Isolationsstärke [mm]	
	Х	Ja	/	< 10	
Isolierung und Isolierstärke	/	Nein	Х	10 – 30	
	/	Nicht alle	/	>30	

Tabelle: Daten Warmwasserleitungen

Systemdarstellung eines Pufferschichtspeichers mit einer Frischwasserstation.

Empfehlung zentraler Warmwasserbereitung:

Kurzfristig im Zuge der Heizungserneuerung:

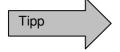
- ♦ Einbau eines Pufferschichtspeichers (max. 750 Liter) mit einer Frischwasserstation für die Warmwasserbereitstellung der Dusch- und Sanitärräume.
- Die Empfehlung ist, einmal am Tag das Wasser auf 60° C aufzuheizen.
 Dies können Sie in den Merkblättern der Deutschen Vereinigung des Gas- und Wasserfaches e.V.
 (DVGW-Arbeitsblätter (aktuellste Fassungen)) nachlesen.
- ♦ Bis zur Durchgangsarmatur sollte eine Zirkulationsleitung mit permanent durchlaufender Zirkulationspumpe installiert sein (DVGW Arbeitsblätter (aktuellste Fassungen)).
- Bitte beachten Sie in Ihrer Sportanlage die Trinkwasserverordnung (aktuelle Fassung).

Warmwasserspeicher der Sportanlage

3.3.2 Einsatzmöglichkeiten einer thermischen Solaranlage

In Ihrer Sportanlage ist keine Solaranlage im Einsatz.

Aus ökologischen Gründen ist eine solare Energiegewinnung zu befürworten. Aus ökonomischen Gründen ist eine genaue Betrachtung erforderlich.


Die Prüfung des Einsatzes einer thermischen Solaranlage wird für diese Anlage **empfohlen**, da die Rahmenbedingungen für den Einsatz einer thermischen Solaranlage als **günstig** gewertet werden.

- 1. Keine Verschattungen der Dachfläche
- 2. Keine Nutzungsunterbrechung: Sommerpause
- 3. Mittlerer Warmwasserverbrauch
- 4. Mittleres Duschaufkommen in der Sportanlage.

Thermische Solaranlagen

Sportanlagen sind aufgrund des relativ konstant hohen Warmwasserbedarfs für die Installation einer thermischen Solaranlage besonders geeignet.

Bei neuen Zentralheizungsanlagen können thermische Solaranlagen problemlos in die Gesamtanlage integriert und regelungstechnisch verbunden werden.

Für die Planung einer thermischen Solaranlage ist eine genaue Verbrauchserfassung bei Nachrüstungen oder eine Verbrauchsabschätzung bei Neubauten unumgänglich, um die richtige Dimensionierung der Anlage zu gewährleisten.

Flachkollektoren sollten optimal nach Süden ausgerichtet sein. Röhrenkollektoren sind bezüglich der Orientierung nach Süden weniger kritisch und können sogar in die Hausfassade integriert werden. Bei Flachdächern werden die Solarkollektoren auf Gestelle mit einer Ausrichtung nach Süden und einer Neigung von 45° montiert.

Dachgegebenheiten	Da	chausrichtung	Verschattung		Dachneigung [°]
	/	West	X	Nein	
	/	Südwest	/	Teilweise	
Dachausrichtung, Verschattung und	Х	Süd	/	Vollständig	
Dachneigung	/	Südost			25
	/	Ost		/	
	/	Nord			

Installationsmöglichkeiten für Solarkollektoren

Die Wirtschaftlichkeit einer thermischen Solaranlage hängt von der genauen Kenntnis des Warmwasserbedarfs ab.

Der Warmwasserbedarf wird nicht in der Anlage ermittelt.

Anhand von Verbrauchswerten kann die Energiemenge, die für die Warmwasserbereitung benötigt wird, berechnet werden.

Sportanlage Bonames

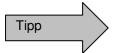
Bei einer ausreichend dimensionierten Solaranlage wird die Warmwasserbereitung in den Sommermonaten, ausschließlich von dieser übernommen. Der Heizkessel kann dann in den Sommermonaten abgeschaltet werden.

Für die Förderung von Solaranlagen stehen standortspezifisch, verschiedene Förderprogramme zur Verfügung. Bei der Bundesförderung sollte das Kumulierungsverbot beachtet werden.

Auslegung und Planung sollten nach Aufnahme der Daten, von Fachbetrieben durchgeführt werden. Kompetente Fachplaner können wir Ihnen gerne nennen.

Die Ermittlung des Warmwasserbedarfs sollte mit Hilfe einer Wasseruhr im Kaltwasserzulauf des Warmwasserspeichers und der täglichen Erfassung der Verbrauchszahlen, über einen Zeitraum von etwa drei Wochen in den Sommermonaten, erfolgen.

Wasserverbrauch nach Jahreszeiten	Kein Verbrauch	Geringer Verbrauch	Normal Verbrauch	Über- durchschnittlicher Verbrauch
Frühling	/	/	X	/
Sommer	/	/	X	/
Herbst	/	/	Х	/
Winter	/	/	X	/


Daten Wasserbedarf nach Jahreszeiten

Verbrauchszeiten	Sommerpause [Wochen]	Winterpause [Wochen]
Gibt es Zeiträume im Jahr in denen kein Warmwasser benötigt wird?	0	0

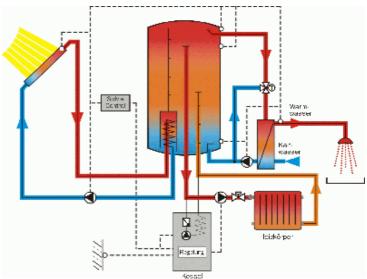
Daten Pausenzeiten für Wasserbedarf

Die Amortisation einer thermischen Solaranlage hängt entscheidend von der Warmwassernutzung während der Sommermonate ab. Je länger die Sommerpause ist, umso länger dauert auch die Amortisationszeit einer thermischen Solaranlage.

Der Einsatz einer thermischen Solaranlage für die Warmwasserbereitung in der Sportstätte sollte aus ökologischen Gründen immer geprüft werden. Vorteile ergeben sich, wenn insbesondere während der Sommermonate Bedarf für warmes Wasser besteht. Soll die Warmwasserbereitung bereits in den Übergangsmonaten April-Mai und bis Ende September oder Oktober effektiv genutzt werden (möglichst 100% Abdeckung) sollten Systeme mit Vakuumröhren eingesetzt werden. Dieser Art von Sonnenkollektoren nutzt bereits diffuses Tageslicht zur Warmwasserbereitung und ist damit für die Übergangsmonate bestens geeignet. Allerdings ist dieser Kollektortyp beim Erwerb teurer.

Bei Sommer-/saisonbetriebenen Sportstätten wie z.B. Tennisheimen kann man bei einer gut dimensionierten Solaranlage vollständig auf eine fossile Heizungsanlage verzichtet werden.

Sportanlage Bonames


Die rein rechnerischen Einsparungen, beim Einsatz einer thermischen Solaranlage, entnehmen Sie bitte der nachfolgenden Tabelle

Auch ist bei den Einsparungen zu berücksichtigen, dass eine thermische Solaranlage ihren höchsten Wirkungsgrad in den Sommermonaten hat. Eine längere Sommerpause wirkt sich hierbei negativ auf die ermittelten Einsparungen aus.

Der Aufteilung des Gesamtwasserverbrauches beläuft sich bei Sportanlagen auf ca. 40% für den Warmwasser- und ca. 60% für den Kaltwasseranteil.

Angaben für die Berechnung mit Flachkollektoren	Berechnungseinheit:	Zahlenwert
Gesamtwasserverbrauch in der Sportstätte	m³ (im Mittel aus drei Jahren)	geschätzt 500,00
Warmwasserverbrauch = 40% Warmwasseranteil im Jahr	m³	200,00
Energiebedarf für die Warmwassererzeugung = 57 kWh für 1m³ Warmwasser	kWh	57
Gesamt kWh für die Warmwassererzeugung	kWh	11.400,00
Realer Preis	1 kWh = € (im Mittel aus drei Jahren)	0,10130
Einsparpotenziale mit thermischer Solaranlage	€	1.154,82

Rechnerische Einsparung bei Einsatz einer thermischen Solaranlage

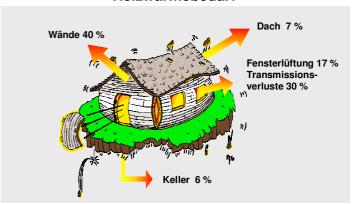
Systemdarstellung der Funktionsweise einer thermischen Solaranlage.

Empfehlung Solaranlage:

Kurzfristig im Zuge der Heizungserneuerung:

• Kritische Prüfung des Einsatzes einer thermischen Solaranlage.

3.4 Wärmeschutz


Ein weiteres voluminöses Potenzial liegt in der Verbesserung des Wärmeschutzes gedeckter Sportanlagen. Die Einsparung von Energie durch Wärmeschutz oder Wärmedämmung ist allerdings mit hohen Investitionen verbunden.

Die Richtlinien des Wärmeschutzes von 1995 sind gegenüber jenen von 1984 um 30 % verschärft worden, sodass unter heutigen Gesichtspunkten Anlagen die vor 1995 erbaut wurden den derzeitigen wärmetechnischen Anforderungen nicht genügen.

3.4.1 Wärmedämmung

Um den Zielwert so einfach wie möglich zu gestalten, werden kleine und große Gebäude gleichbehandelt, obwohl es mit zunehmender Gebäudegröße, wegen des günstigeren Verhältnisses von Gebäudefläche zum Gebäudevolumen, zu einer Minderung des Energieverbrauches kommt.

Heizwärmebedarf

Unabhängig davon, ob ohnehin Sanierungen geplant sind, führt die EnEV (aktuelle Fassung) in zwei Punkten eine Verpflichtung für Hauseigentümer ein, Nachbesserungen vorzunehmen.

Dies sind im Einzelnen:

Heizungs- und Wasserohre nach EnEV 2014

In nicht beheizten Räumen, die zugänglich sind aber bisher nicht gedämmt waren, müssen bis 31.12.2006 nach den Bestimmungen der EnEV (aktuelle Fassung) gedämmt werden.

Dämmung von Decken nach EnEV 2014

Am **16.10.2013** hat die Bundesregierung die EnEV 2014 mit allen vom Bundesrat geforderten Auflagen beschlossen. Sie wird am **01.05.2014** in Kraft treten.

Sportanlage Bonames

Hierbei ergibt sich folgende Änderung im Bereich der obersten Geschossdecke: Für Bestandsgebäude besteht nach EnEV eine nachträgliche Dämmpflicht oberster Geschoßdecken, nach der ein U-Wert von mind. 0,24 W/m²K erreicht werden muss.

Für die Dämmung der Kellerdecken hingegen sieht die EnEV keine Dämmpflicht mehr vor.

In der Tabelle "Entwicklungsdaten beim nachträglichen Wärmeschutz" finden sie eine Übersicht über die Entwicklung des nachträglichen Wärmeschutzes und daraus resultierend verschiedene Dämmstärken.

	EnEV 2002		EnEV 2014	
	U-Wert	Dämmung	U-Wert	Dämmung
Dachschräge	0,30	12 - 14 cm	0,24	16 - 18 cm
Dachboden	0,30	10 - 12 cm	mind. 0,24	16 - 18 cm
Flachdach	0,25	14 - 16 cm	0,20	18 - 20 cm
Außendecke nach unten	0,35	08 - 10 cm	0,24	14 - 16 cm
Wand (Fassadendämmung)	0,35	08 - 10 cm	0,24	14 - 16 cm
Wand (Innendämmung)	0,45	05 - 06 cm	0,35	08 - 10 cm
Decken allgemein (Außer Kellerdecken)	0,40	06 - 08 cm	mind. 0,24	16 - 18 cm
Dämmung Bodenoberseite	0,50	04 - 05 cm	0,50	04 - 05 cm
Fenster allgemein	= 1,70	/	= 1,30	/
Dachflächenfenster	= 1,70	/	= 1,40	/

Entwicklungsdaten beim nachträglichen Wärmeschutz

In der Tabelle "Daten für Fensterarten" sind die im Gebäude vorhandenen Fensterarten aufgelistet (Spalte 1) und prozentual in Bezug auf die Gesamtfensterfläche in Spalte 2 eingetragen. Hinsichtlich der Einbruchssicherheit werden Glasbausteine und Sicherheitsverglasung mit "sehr gut" bewertet. Beim Isolationsvermögen schneiden diese Fenstervarianten eher schlecht ab. Für gute Wärmedämmung von Fensterfronten bedarf es einer mehrfachen Isolier- oder Wärmeschutzverglasung. Aus Wärmeschutzgründen heraus gilt

die Faustregel "Je häufiger die Anlage genutzt wird, umso besser sollte der Wärmeschutz sein."

Fensterarten	Vorhanden	Anteil in % an der gesamten Fensterfläche Isolations-vermögen		Einbruchs- sicherheit
Einfachverglasung	/	/		
Glasbausteine	/	/		•••
Sicherheitsverglasung	/	/	•	•••
2-Scheiben-Isolierverglasung	X	100	•	•
3-Scheiben-Isolierverglasung	/	/	••	••
2-Scheiben-Wärmeschutzverglasung	/	/	••	•
3-Scheiben-Wärmeschutzverglasung	/	/	•••	••
●●● = sehr gut	= gut	= weniger gut	■ = ni	cht geeignet

Daten für Fensterarten

Vergleichen Sie bei der Wärmedämmung von Decken und Wänden Ihre vorhandene Isolierstärken mit den in Spalte 2 angegebenen Richtwerten für die Isolationsstärke, um Ihren Handlungsbedarf zu erkennen.

Sportanlage Bonames

Bedenken Sie, dass Wärmeschutzmaßnahmen mit nicht unerheblichen Kosten verbunden sind.

Wärmedämmung	Isolierstärke [cm]	Richtwerte Isolation [cm] EnEV 2014	Mauerwerk [cm]
Dach	10	20	0
Außenwände	0	16	0
Oberste Decke	10	16 - 18	24 - 30
Boden	4	6	0

Daten für Wärmedämmung

	Х	Ziegel, Haupthaus	/	Metall
Die Dächer des Gebäudes sind	/	Asbestfaserzementplatten	Х	Bitumen, Anbau
gedeckt mit:	/	Schiefer	/	Zementwellplatten
	/	Folie	/	Gründachabdichtung

Dachabdichtung

Betrachtung der Wirtschaftlichkeit verschiedener Maßnahmenpakete.

Wirtschaftlich ist eine Energiesparmaßnahme nur, wenn die Einsparung über die Lebensdauer der Anlage größer ist, als die Aufwendungen.

Es müssen sämtliche Kosten berücksichtigt werden.

Verbrauchsgebundene Kosten
 Betriebsgebundene Kosten
 (Brennstoffe, Energien)
 (Bedienung, Wartung,

Personal)

Kapitalgebundene Kosten (Zinsen, Abschreibung,

Instandsetzung)

• sonstige Kosten (Versicherung, Steuern)

Teilt man die Investitionskosten durch die jährliche Einsparung, erhält man die Rücklaufzeit des eingesetzten Kapitals.

Ist diese geringer als die zu erwartende Nutzungsdauer, ist eine

Wirtschaftlichkeit gegeben.

	Heizeinsparung	Amortisationszeit	Investitions- kosten
Dämmung der Außenwände	15 - 30 %	25 - 50 Jahre	75 - 100 € /m²
Fenster mit Wärmeschutzverglasungen	25 - 30 %	30 - 40 Jahre	225 - 375 € /m²
Dämmung der obersten Geschossdecke	5 - 25 %	8 - 10 Jahre	12 - 30 € /m²
Dämmung der Kellerdecke	5 - 10 %	10 - 15 Jahre	15 - 25 € /m²
Konventionelle Heizkesselerneuerung	10 - 20 %	5 - 10 Jahre	35 - 75 € /m²
Brennwerttechnik (gegenüber Heizkessel)	20 - 30 %	5 - 10 Jahre	75 - 250 € /m²
Einsatz einer modernen Regelung	5 - 15 %	3 - 5 Jahre	500 - 750 € /m²
Einsatz von Thermostatventilen	bis 5 %	1 - 3 Jahre	25 - 35 € /m²

Einsparpotenziale und Wirtschaftlichkeit verschiedener Einsparmaßnahmen

Sportanlage Bonames

Empfehlung Wärmedämmung:

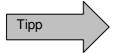
Mittel- bis Langfristig:

- ♦ Bei jeglichen Sanierungen und Veränderungen an der Gebäudehülle (Anstrich, Dachdeckung, Putzarbeiten, Fenstererneuerung) sollten grundsätzlich Wärmeschutzmaßnahmen mit ergriffen werden, da die Mehrkosten dann geringer ausfallen. Werden diese Möglichkeiten nicht genutzt, entstehen bei einer reinen Wärmeschutzmaßnahme hohe Zusatzkosten.
- Eine Wärmedämmung sollte von einer kompetenten Fachfirma geplant und durchgeführt werden.

3.5 Sanitäre Anlagen

3.5.1 Duschanlagen

Die größten Einsparpotenziale im Sanitärbereich liegen erfahrungsgemäß bei den Duschanlagen.


Nachfolgend wird Ihnen eine zahlenmäßige Erfassung der Duschen für die verschiedenen möglichen Armaturen gegeben. Die minimal bzw. maximal gemessenen Durchflüsse Ihrer Anlage sind in den Spalten 2 und drei eingetragen. Die qualitative Bewertung (Spalten 4-6) favorisiert die durch Näherungselektronik oder Selbstschlussventile erzielbare Wassereinsparung. Aus hygienischen Gründen wird eine Armatur mit Näherungselektronik mit "sehr gut" eingestuft. Eine solche Technik ist jedoch aufgrund der hohen Investitionskosten nur für Anlagen mit einer sehr hohen Frequentierung (z.B. in Schwimmbädern) zu empfehlen.

Wandduschen / Armaturen	Anzahl	Durchfluss min. [Liter/Min.]	Durchfluss max. [Liter/Min.]	Wasserein- sparung durch Armatur	Hygiene	Vandalen- sicherheit
Kaltwasseranschluss	/	/	/		•	•
2-Griff-Armaturen	/	/	/		•	•
Einhand-Mischbatterie	/	/	/	•	•	•
1-Griff-Armaturen / vorgemischt	/	/	/		•	•
Selbstschlussarmaturen	17	10,00	10,00	••	••	••
Näherungselektronik	/	/	/	•••	•••	••
●●● = sehr gut	●● = gut		• = weniger	gut	■ = nicht g	eeignet

Daten für Wandduschen

Aus Wasserersparnisgründen sind Armaturen mit Selbstschlussventilen zu bevorzugen. Eine Wassereinsparung von bis zu 30% ist durch den Einsatz von Selbstschlussarmaturen möglich.

Dem gegenüber können hohe Wartungs- und Instandhaltungskosten stehen.

Vor dem Einsatz von Selbstschlussarmaturen sollte der Leitungsdruck und die Leitungsqualität bei älteren Anlagen geprüft werden, da ansonsten eine einwandfreie Funktion beeinträchtigt werden kann.

Sportanlage Bonames

In Duschräumen mit wenigen Duschplätzen (3 Duschen) und einer hohen Frequentierung der Duschen innerhalb kurzer Zeit, reduziert sich das Einsparpotenzial bei Selbstschlussarmaturen, da die Duschen meistens im Rotationsprinzip genutzt werden.

Je höher die Frequentierung der Duschanlage ist, desto mehr lohnt sich der Einsatz moderner, wassersparender Armaturen.

Die vor Ort gemessenen Schließzeiten der Armaturen sind in der folgenden Tabelle dargestellt. Der Richtwert bei Selbstschlussarmaturen liegt bei 30 - 45 Sekunden. Wird dieser Richtwert überschritten, sollte die Armatur durch einen Installateur neu eingestellt werden.

Armatur	Schließzeit (gemessen) Minimalwert [sek.]	Schließzeit (gemessen) Maximalwert [sek.]	Richtwert [sek.]
Selbstschlussarmaturen:	60	70	30 – 45

Daten für Schließzeiten

In Ihrer Anlage ist **ein** zentrales Mischwasserthermostat installiert.

Ein zentrales Mischwasserthermostat regelt komfortabel die maximale einstellbare Duschwassertemperatur. Hierdurch wird nicht nur Energie gespart, sondern auch effektiv ein Verbrühungsschutz gewährleistet.

Auf Grund der Arbeitsblätter der DVGW (aktuellste Fassungen) muss in Bezug auf die zentralen Mischwasserthermostate (Durchgangsmischarmaturen) beachtet werden, dass der Leitungsinhalt zwischen der Durchgangsarmatur und der am weitest entfernten Entnahmestelle nicht mehr als 3 Liter Wasser betragen sollte.

Mischwasserthermostat der Warmwasserbereitstellung

Bis zur Durchgangsarmatur sollte eine Zirkulationsleitung mit permanent durchlaufender Zirkulationspumpe installiert sein (DVGW Arbeitsblätter (aktuellste Fassungen)).

Sportanlage Bonames

In den nachstehenden Tabellen sind die vor Ort gemessenen mittleren Durchflüsse in Litern pro Minute für die entsprechende vorhandene Armatur eingetragen. Der empfohlene Richtwert beträgt 10 Liter pro Minute. Dieser Richtwert wird bei Einsatz so genannter Duschköpfe mit Durchfluss-Konstanthaltern erzielt. Die größten Einsparpotentiale sind entsprechend mit den Duschköpfen zu erzielen. Die Armatur regelt anschließend nur noch die Duschzeit.

Die tabellarische Auswertung der Duschen ergibt die in Spalte 3 errechnete Wasserersparnis bei Einsatz von Duschköpfen mit Durchfluss-Konstanthaltern und der Zugrundelegung des Richtwertes. Setzt man eine Duschzeit von 5 Minuten an, so errechnet sich daraus eine Wasserersparnis in Litern pro Duschgang (letzte Spalte).

Wandduschen	Messwert Durchfluss (Durchschnitt)	Richtwerte		rsparnis durch Einsatz von nköpfen mit Durchfluss- Konstanthaltern
Einheit	[Liter/Min.]	[Liter/Min.]	[Liter/Min.] Liter pro Duschgang (5 Minuten)	
Selbstschlussarmaturen	10	10	0,00	0,00

Auswertung für Wandduschen

Duschköpfe mit druckunabhängigen Durchfluss-Konstanthaltern reduzieren den Wasserdurchfluss auf maximal 10 Liter pro Minute.

Hohe Wassereinsparung versus Trinkwasserhygiene

Bei einer deutlichen Reduzierung des Wasserbedarfs durch den Einsatz wassersparender Duschköpfe oder der Stilllegung von Warmwasserleitungen an den Waschtischen, kann es im installierten Wassernetz zu ungewollten Nebenwirkungen bei der Trinkwasserhygiene kommen.

Aus diesem Grund ist bei der Planung von wassersparenden Sanitäranlagen immer ein Fachbetrieb einzuschalten und das vorhandene Leitungsnetz zu überprüfen.

Empfehlung Duschen:

Kurzfristig:

- ♦ Neue Duscharmaturen und Duschköpfe im Zuge der Heizungserneuerung.
- Auf Grund der Arbeitsblätter der DVGW (aktuellste Fassungen) muss in Bezug auf die zentralen Mischwasserthermostate (Durchgangsmischarmaturen) beachtet werden, dass der Leitungsinhalt zwischen der Durchgangsarmatur und der am weitest entfernten Entnahmestelle nicht mehr als 3 Liter Wasser betragen sollte.
- Bitte beachten Sie in Ihrer Sportanlage die Trinkwasserverordnung (aktuelle Fassung).

Duschen der Sportanlage

3.5.2 Duschraumzustand

Auskunft über den Zustand der Duschanlagen in Bezug auf Schimmelstellen gibt Ihnen die Tabelle "Daten für den Duschraum". Eine hohe Anzahl von Schimmelstellen weist auf einen zu hohen Feuchtigkeitsgehalt im Duschraum hin. Aus hygienischen Gründen und zum Erhalt der Bausubstanz ergibt sich in diesem Fall einen hohen Handlungsbedarf. Eine Maßnahme ist der Einsatz von Duschköpfen mit Tropfenbildung, eine weitere sollte eine gut funktionierende Be- und Entlüftung der Duschräume sein (siehe nachfolgenden Abschnitt).

Duschraum	Zustand (Schimmelstellen)		Deckenbeschaffenheit	
Zustand und Deckenbeschaffenheit	Х	keine	/	Beton
	/	wenige	/	Holz
	/	viele	Х	Metall
	/	sehr viele	/	Gipskarton
	/	/	/	Akustik

Daten für Duschraum

3.5.3 Duschraumbelüftung

Wichtig in Duschräumen ist die Verwendung von Duschköpfen mit Tropfenbildung.

In Duschräumen mit hoher Frequentierung ist eine gut funktionierende Be- und Entlüftung weiterhin von großer Bedeutung.

Diese sollte über eine feuchtigkeitsgesteuerte Regelung (Hygrostat) erfolgen, um ein vollständiges Abtrocknen des Duschraumes zu gewährleisten.

Um Wärmeverlusten vorzubeugen, sind kontrollierte Schaltzeiten vorzusehen. Während der Wintermonate kann auf eine Fensterlüftung, die zu hohen Energieverlusten führt, verzichtet werden.

Sportanlage Bonames

Die Dimensionierung des Abluftventilators ist abhängig von der Raumgröße. Mindestens das **10 fache** des Raumvolumens sollte in einer Stunde nach außen befördern werden können.

Duschraum	Ma	Manuelle Lüftung		Automatische Lüftung	
	/	Glasbausteine	Х	handgesteuert	••
	/	Fensteranlagen	/	sensorgesteuert	•••
Lüftung und Steuerung	/	Lüftungsschlitze in der Tür	/	lichtgekoppelt	•••
	/	Oberlichter in der Decke	/	feuchtigkeits- gesteuert	••••
	/	keine	Х	Keine, Schiedsrichter	•
●●●● = sehr gut	● = gut	● ● = W6	niger gut	•= ni	cht gut

Daten für Duschraumbelüftung

Empfehlung Duschraumbelüftung:

Kurzfristig:

- Einsatz einer feuchtigkeitsgesteuerten Entlüftung (über Hygrostat) der Duschräume.
- Eine Lüftungssteuerung sollte für Nutzer nicht zugänglich installiert sein, damit Fehlfunktionen durch unsachgemäße Bedienung verhindert werden.

3.5.4 Waschtische

Der Bestand an verschiedenen Armaturen wird nachfolgend tabellarisch aufgelistet.

Armatur	Anzahl	Wasserein- sparung durch Armatur	Hygiene	Vandalen- sicherheit
Kaltwasseranschluss	8			•
2-Griff-Armaturen	/			•
Einhand-Mischbatterie	6	•	•	••
1-Griff-Armaturen/vorgemischt	/			•
Selbstschlussarmaturen	/	••	••	•••
Näherungselektronik	/	•••	•••	••
Reihenwaschtisch (1-Griff)	/			•
Reihenwaschtisch (2-Griff)	/			•
Reihenwaschtisch (Selbstschluss)	/	••	••	•••
●●● = sehr gut	● = gut	● = weniger gu	t ■= r	nicht geeignet

Daten Waschtische

Die Daten geben Auskunft über für die verschiedenen Armaturen hinsichtlich ihrer Möglichkeiten zur Wassereinsparung, der Eignung aus hygienischer Sicht sowie ihrer Sicherheit gegenüber mutwilliger Zerstörung (Vandalen Sicherheit). Die Beurteilung reicht von "sehr gut" bis "nicht geeignet".

Sportanlage Bonames

Nachfolgend werden die Wasserverbräuche der unterschiedlichen Armaturen quantitativ mit Messwerten angegeben. Spalte 1 und 2 zeigt die gemessenen minimalen bzw. maximal vorgefundenen Einzelwerte. Der Wasserverbrauch an Waschtischen ist vergleichsweise gering. Dennoch bestehen auch hier Einsparpotenziale.

	Messy	verte		Wasserersparnis bei
Armatur	Durchfluss min. [Liter/Min.]	Durchfluss max. [Liter/Min.]	Richtwerte [Liter/Min.]	Einsatz von Durchfluss- Konstanthaltern [Liter/Min.]
Kaltwasseranschluss	6,00	6,00	6	0,00
Einhand-Mischbatterie	6,00	6,00	6	0,00

Auswertung Waschtische

Bei Wasserspararmaturen mit druckunabhängigen Durchfluss-Konstanthaltern liegt der Wasserdurchfluss bei maximal 6 Liter pro Minute. Dieser Wert ist als Richtwert in Spalte 4 neben den tatsächlich gemessenen gestellt. Spalte 5 gibt Auskunft über die tatsächlich zu erreichende Wasserersparnis bei Umstellung auf Durchfluss-Konstanthalter, bzw. beim Einsatz von Wasserspareinsätzen bei Reihenwaschtischen.

Empfehlung Waschtischarmaturen: Kurzfristig:

- An allen Waschtischen sollten Durchfluss-Konstanthalter mit einem Wasserdurchfluss von max. 6 Litern pro Minute und einer Diebstahlsicherung installiert werden.
- In öffentlichen Sportanlagen genügt es aufgrund der geringen Nutzung, kosten- und wartungsgünstige Kaltwasserarmaturen an den Handwaschbecken einzusetzen. (Bitte beachten Sie: Stillgelegte Warmwasserleitungen bergen ein erhöhtes Legionellenrisiko und müssen vom Leitungsnetz (am Abgang der Hauptverteilungsleitung) getrennt werden).

Waschtische der Sportanlage

3.5.5 Toilettenspülung

Während Druckspüler und konventionelle Spüler wegen ihres hohen Wasserverbrauchs von >9 Litern pro Spülgang "weniger gut" geeignet sind, erweisen sich Spül-Stopp-Kästen und 2-Mengen-Spülkästen als deutlich sparsamer im Wasserverbrauch.

Spülarmaturen		Anzahl	Durchfluss [Liter / Spülgang]	Wasserein- sparung durch Armatur	Hygiene	Vandalen- sicherheit
Druckspüler		/	>9	•	•	••
Konventionelle Toilettenspülkäste	en	/	>9	•	••	•
Spül-Stopp-Toilettenspülkäster	1	9	3-9	••	•	••
2-Mengen-Toilettenspülkästen		/	2/6 oder 4,5/9	•••	••	••
●●● = sehr gut	•	● = gut		= weniger gut	■ = nic	ht geeignet

Daten zur Toilettenspülung

In Sportanlagen werden Spül-Stopp-Toilettenspülungen meist nicht sachgemäß betätigt. Lösungsmöglichkeiten bieten mit Hinweisschildern versehene Zweimengenspülkästen mit fest eingestellten Spülvolumen.

Im Bereich der Toiletten ist eine Trinkwassersubstitution durch Brauchwasser oder durch Regenwasser gut möglich, jedoch müssen dafür meist aufwändige Arbeiten, wie z.B. die Installation neuer Wasserleitungen durchgeführt wird. Aus diesem Grunde ist eine Umrüstung nur dann zu empfehlen, wenn zeitgleich umfangreiche Substanzerhaltungs- oder Sanierungsarbeiten anstehen.

Empfehlung Toilettenspülung: Langfristig:

♦ Bei Defekt oder Sanierung: Ausbau der Spül-Stopp- Toilettenspülkästen. Einbau von 2-Mengen-Toilettenspülkästen.

Toilette der Sportanlage

3.5.6 Urinale

Für die Urinal Spülung gilt das gleiche wie für die Toilettenspülung. Auch hier lassen sich durch geeignete Wahl der Armaturen Einsparungen beim Wasserverbrauch erzielen und hygienische Verhältnisse verbessern. Die Tabelle zeigt die Situation in der Sportanlage zahlenmäßig auf. Bei einer Neuanschaffung sollte grundsätzlich darauf geachtet werden, dass Urinal Becken mit geringem Wasserbedarf angeschafft werden.

Spülarmaturen	Anzahl	Wassereinsparung durch Armatur	Hygiene	Vandalensicherheit
Druckspüler	7	•		••
Näherungselektronik	/	••	•••	••
Trockenurinale	/	•••	•••	••
●●● = sehr gut ●	● = gut	● = wen	niger gut	= nicht geeignet

Daten für Urinale

Bei der Datenaufnahme waren die Spülzeiten der Urinale **gut** eingestellt.

In den Urinalen **werden keine** WC-Steine eingesetzt. In den WC-Räumen **werden keine** Duftspender eingesetzt.

Empfehlung Urinale:

Langfristig:

♦ Bei einer Neuanschaffung sollte grundsätzlich darauf geachtet werden, dass entweder Urinal Becken mit geringem Wasserbedarf oder Trockenurinale angeschafft werden.

Urinale der Sportanlage

3.5.7 WC Ausstattung

Ausstattung		Ökologisch wertvoll	Hygiene	Vandalensicherheit
Stoffbandrollen	/	•••	••	••
Stoffhandtuch	/	•••	•	•
Papierhandtücher Recycling	Х	••	•••	
Papierhandtücher Normal	/	•	•••	
Elektrischer Händetrockner	/			•••
●●● = sehr gut	●● = gut	• = wen	iger gut	■ = nicht geeignet

Daten Ausstattung im WC

Stoffbandrollen werden als ökologisch wertvoller eingestuft als Papierhandtücher. Aus hygienischen Gründen wird allerdings Papierhandtüchern ein Vorteil eingeräumt.

Empfehlung WC-Ausstattung:

Kurzfristig:

• Papierhandtücher Recycling werden mit "sehr gut" bewertet und empfohlen.

3.5.8 Abwasser

In Sportanlagen werden erfahrungsgemäß Reinigungs- oder Desinfektionsmittel verwendet, die das Abwasser stark belasten. In den meisten Fällen sind diese jedoch nicht notwendig bzw. durch weniger aggressive Reinigungsmittel ersetzbar. Aus diesem Grund sollten sie beim Kauf handelsüblicher Präparate darauf achten, dass die Reinigungsmittel kein Formaldehyd, Chlor oder Phosphat beinhalten. Nutzen Sie lieber Schmierseife oder leicht abbaubare Tenside, Essigreiniger oder Zitronensäurereiniger.

Empfehlung Abwasser:

Kurzfristig:

• Einsatz umweltfreundlicher Reinigungsmittel und biologischer Entkalker.

3.5.9 Sonstige elektrische Verbraucher

Eine Vielzahl von elektrischen und elektronischen Geräten besitzt keinen Netzschalter. Auch im scheinbar ausgeschalteten Zustand befinden sich diese Geräte tatsächlich in einem "Standby Betrieb" und verbrauchen weiterhin Strom. In vielen Fällen schafft hier eine schaltbare Steckdosenleiste in der Netzzuleitung Abhilfe, deren Schalter die Geräte komplett vom Netz trennt.

Sportanlage Bonames

Empfehlung elektrische Verbraucher:

Kurzfristig:

• Fernseher, Receiver und Bürogeräte verbrauchen im "Standby Betrieb" unnötig Energie. Installieren Sie einen Hauptschalter (z.B. Steckerleiste mit Schalter) um die Geräte ganz vom Netz zu trennen.

3.5.10 Beleuchtung

Grundsätzlich sollten in allen Räumen Energiesparlampen installiert sein. Dies gilt auch für Lampen mit kurzer Brenndauer (ab 15 Min täglich). Die Leistung der Energiesparlampen sollte bei gleicher Lichtausbeute etwa 1/5 derjenigen von Glühlampen betragen. Die Energiesparlampen mit elektronischen Vorschaltgeräten arbeiten flimmerfrei ohne Einschaltverzögerung und sind äußerst schaltfest. Die Lebensdauer der Energiesparlampen ist darüber hinaus ca. sechs- bis achtmal höher als bei vergleichbaren Glühlampen. Niedervolt-Halogenlampen sind keine Energiesparlampen.

Verwendung elektronischer Vorschaltgeräte

Leuchtstofflampen benötigen zum Betrieb ein Vorschaltgerät, das sich in der Regel in der Leuchte befindet, und bei Energiesparlampen in der Lampe integriert ist. Dabei unterscheidet man zwischen konventionellen (KVG), verlustarmen (VVG) und elektronischen (EVG) Vorschaltgeräten.

Diese Vorschaltgeräte haben auch einen erheblichen Einfluss auf den Stromverbrauch der Beleuchtung:

KVG	VVG	EVG
71 Watt	66 Watt	55 Watt
100 %	93 %	77 %

Anschlussleistungen einer 58 Watt Leuchtstofflampe an verschiedenen Vorschaltgeräten

Elektronische Vorschaltgeräte (EVG) haben geringere Verluste gegenüber den konventionellen Vorschaltgeräten (KVG) und ermöglichen durch Hochfrequenzbetrieb eine um 10-15 % höhere Lichtausbeute der Leuchtstofflampen (siehe Tabelle).

Die Umrüstung von bestehenden Anlagen auf elektronische Vorschaltgeräte ist aufwendig (wenn überhaupt möglich) und technisch nicht unproblematisch. Dazu kommt, dass alte Leuchten nicht mehr dem Stand der Technik entsprechen. In der Regel ist meist eine komplette Neuinstallation der Beleuchtung notwendig und zu bevorzugen.

Häufiges An- und Ausschalten verbraucht nicht mehr Strom, wie häufig gemutmaßt wird, kann aber die Lebensdauer von Lampen herabsetzen. Dies gilt vor allem für Leuchtstoffröhren mit konventionellem Vorschaltgerät. Glühlampen sowie Leuchtstoffröhren und Energiesparlampen, die mit einem elektronischen Vorschaltgerät ausgestattet sind, haben keine Probleme mit dem häufigen Schalten.

Sportanlage Bonames

Vorteile von LED-Röhren

Wer die neuen energiesparenden LED-Röhren sicher eingebaut hat, genießt einige Vorteile:

- geringerer Stromverbrauch gegenüber herkömmlichen Leuchtstoffröhren
- lange Lebensdauer unabhängig von der Einschalthäufigkeit
- das Licht ist sofort mit maximaler Helligkeit direkt nach dem Einschalten ohne Flimmern verfügbar
- Röhren sind mit verschiedenen Farbtemperaturen (Farbeindruck der Lichtquelle) erhältlich

Mögliche Gefahren

Je nach Bauart Ihrer alten Leuchtstoffröhre müsste eventuell vor dem Einsetzen der neuen LED-Röhre der Lampenträger geöffnet und ein sogenanntes Vorschaltgerät entfernt oder überbrückt werden. Bei diesem Eingriff lauern Gefahren bis hin zum Stromschlag! Trotz verstärkter Kontrollen des Gewerbeaufsichtsamtes werden vereinzelt gefährliche LED-Röhren angeboten, an denen bei falschem, einseitigem Einsetzen der Röhre in den Lampenträger spannungsführende Teile berührbar werden.

Verliert die Leuchte bei der Umstellung die Zulassung?

Solange kein Eingriff in die Leuchte gegeben ist, bleibt die Zulassung der Leuchte bestehen, wie es beim Betrieb mit KVG oder VVG mit Ersatzstarter für LED Röhren der Fall ist. Findet ein Eingriff in die Leuchte statt, z.B. beim Entfernen oder überbrücken des Vorschaltgeräts oder einer

Neuverdrahtung, dann erlöschen die Zulassung und Hersteller-Garantien. Wenn man das Vorschaltgerät eliminiert wird, fingiert die Armatur nur noch als 230 V Fassung (Stecker). Alle elektronischen Komponenten befinden sich in der LED-Röhre und sind mit dieser geprüft und zertifiziert. Da für die korrekte Stromzufuhr der LED-Röhre der Elektriker zuständig ist, besteht trotz Umrüstung eigentlich kein Risiko.

Folgende Tabelle zeigt die unterschiedlichen lichttechnischen Eigenschaften verschiedener Lampentypen

Lampentyp	Lichtausbeute (lm/W)	Lebensdauer (h)	Farbwieder- gabequalität	Startzeit
Glühlampe	6 - 16	1.000	Gut	Sofort
Halogenglühlampe	14 - 22	2.000	Sehr gut	Sofort
Kompakt-Leuchtstofflampe	40 - 76	8.000	Gut	Schnell
Leuchtstoff	43 - 104	10.000	Gut	Schnell
LED-Röhren	8 – 60	15.000	Gut	Sofort

Lichtausbeute verschiedener Leuchtmittel

Folgende Tabelle zeigt wie viel Lumen bei welcher Watt Zahl freigesetzt wird

Energieverbrauch	Lumen Glühbirne	Lumen Halogenlampe	Lumen Energiesparleuchte	Lumen LED
10 Watt	80 lm	/	/	/
15 Watt	120 lm	119 lm	125 lm	136 lm
40 Watt	415 lm	410 lm	423 lm	470 lm
60 Watt	710 ml	702 lm	741 lm	806 lm

Lichtausbeute verschiedener Leuchtmittel

Anhand der Tabelle können Sie erkennen, dass die LED-Leuchte die größte Lichtausbeute erbringt. Das heißt, bei gleichem Stromverbrauch bzw. Energiekosten sind die LED-Leuchten im Vergleich zu Energiesparlampen und Glühbirnen wesentlich effizienter. Das Austauschen von Glühbirnen und Energiesparlampen zugunsten der LED-Lampe wird sich also nicht nur in der Helligkeit wiederspiegeln, sondern auch im Stromverbrauch bemerkbar machen.

Einsatz energiesparender Regelungstechnik

Was bei einer Heizungsanlage zur Selbstverständlichkeit gehört, wird bei den Beleuchtungssystemen eher selten genutzt. Die Möglichkeit, mit der zu Hilfenahme von Regelungstechniken, Licht gezielt einzusetzen, dort wo es auch genutzt werden soll. Vor dem Einsatz zusätzlicher Technik sollte erwogen werden, ob eine motivationsfördernde Maßnahme auch eine Verbesserung des Nutzerverhaltens zum Ziel hat.

Folgende Regelungssysteme stehen zur Verfügung

- Nachlaufschaltungen in den Flurbereichen.
- Zeitschaltung der einzelnen Räume und Bereiche.
- Anwesenheitsabhängige Regelung.
- Tageslichtabhängige Regelung.

Empfehlung Beleuchtung:

Kurzfristig Umkleide- und Toilettenbereiche:

- ♦ Belassen der zentralen Schaltung. Alle Nebenbereiche der Sportanlage sollten über separate Bewegungsmelder geschaltet werden.
- Konsequenter Einsatz von LED Beleuchtungs Systemen.

Zentrale Schaltung der Beleuchtung